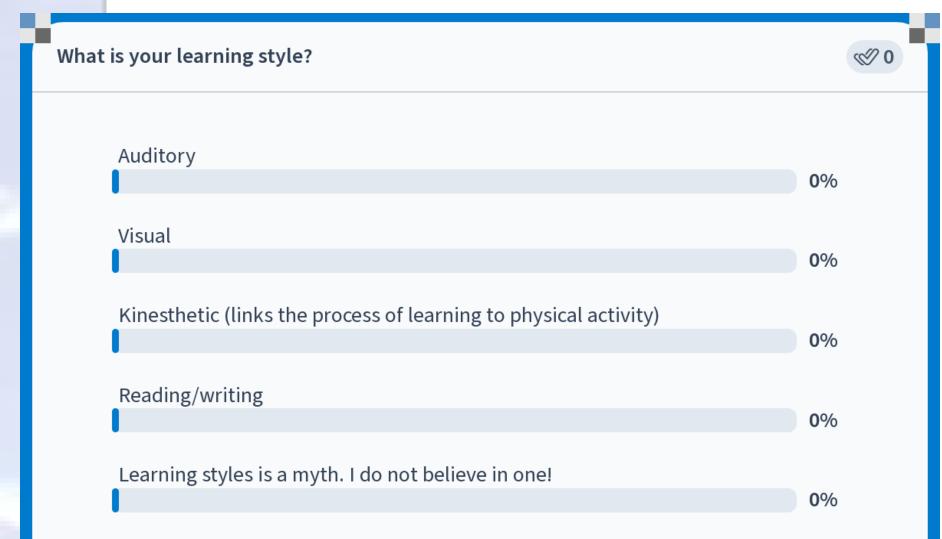
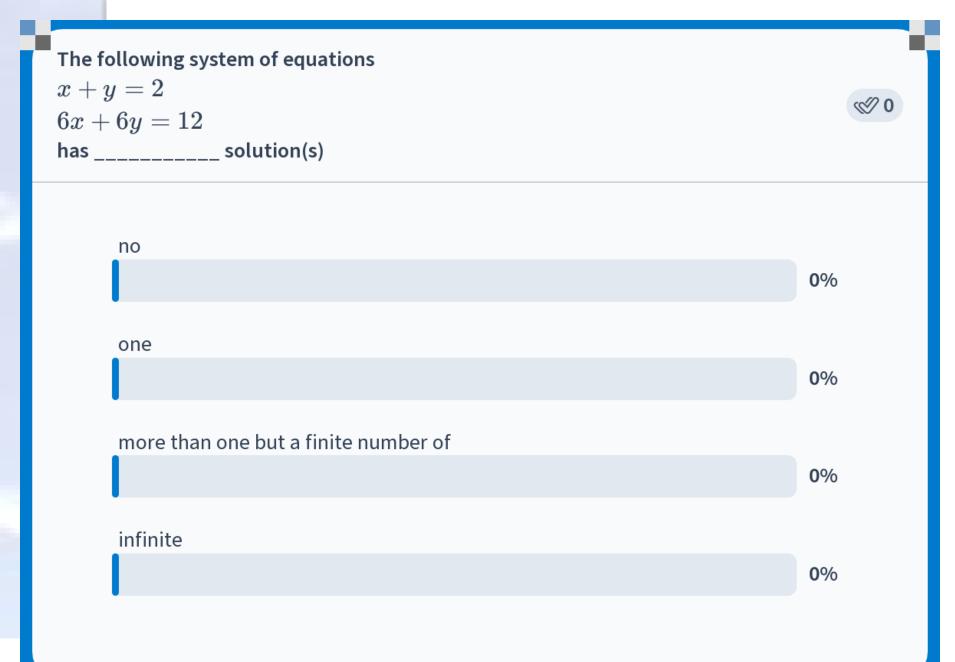
Gaussian Elimination with Partial Pivoting

http://nm.MathForCollege.com


Transforming Numerical Methods Education for STEM Undergraduates


Regrading and Asking Questions About Test

You can submit your test for re-grading. Submit to me in class, or see me during office hours, or slip under the ENC2215 door the graded test about which questions you want to be re-graded and a statement of why you think they need regrading. Make this submission within ten business days of the test being returned.

Just want to see how a problem is solved – ask during office hours of any three of us, or make an appointment outside of office hours, etc.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Naive Gauss Elimination Pitfalls

Pitfall#1. Division by zero

$$10x_2 - 7x_3 = 3$$

$$6x_1 + 2x_2 + 3x_3 = 11$$

$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 0 & 10 & -7 \\ 6 & 2 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ 9 \end{bmatrix}$$

Is division by zero an issue here?

$$12x_1 + 10x_2 - 7x_3 = 15$$

$$6x_1 + 5x_2 + 3x_3 = 14$$

$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 9 \end{bmatrix}$$

Is division by zero an issue here? YES

$$12x_1 + 10x_2 - 7x_3 = 15$$

$$6x_1 + 5x_2 + 3x_3 = 14$$

$$24x_1 - x_2 + 5x_3 = 28$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 24 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 28 \end{bmatrix} \longrightarrow \begin{bmatrix} 12 & 10 & -7 \\ 0 & 0 & 6.5 \\ 0 & -21 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 6.5 \\ -2 \end{bmatrix}$$

Division by zero is a possibility at any step of forward elimination

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Exact Solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using 6 significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.9625 \\ 1.05 \\ 0.999995 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using $\mathbf{5}$ significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.625 \\ 1.5 \\ 0.99995 \end{bmatrix}$$

Is there a way to reduce the round off error?

Avoiding Pitfalls

Increase the number of significant digits

- Decreases round-off error
- Does not avoid division by zero

Avoiding Pitfalls

Use Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

THE END

Given a set of equations	[12 24 48 60	16 36 32 66	28 66 64 78	$\begin{bmatrix} 56\\76\\96\\96\\92 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 44\\74\\92\\100 \end{bmatrix}$	-6 28
1 st step of forward elimination	[12 0 0 0	16 4 -32 -14	28 10 -48 -62		444 -142 -848 -1154
2 nd step of forward elimination	[12 0 0 0	16 4 0 0	28 10 32 -27	$ \begin{array}{c} 56 \\ -36 \\ -416 \\ -314 \end{array} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	444 -142 -1984 -1651
3 rd step of forward elimination	[12 0 0 0	16 4 0 0	28 10 32 0	$ \begin{bmatrix} 56 \\ -36 \\ -416 \\ -665 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = $	444 -142 -1984 -3325

Gauss Elimination with Partial Pivoting

What is Different About Partial Pivoting?

At the beginning of the k^{th} step of forward elimination, find the maximum of $|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|$

If the maximum of these values is $|a_{pk}|$ in the p^{th} row, $k \le p \le n$, then switch rows p and k.

Example (2nd step of FE) $\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -7 & 6 & 1 & 2 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -17 & 12 & 11 & 43 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ -6 \\ 8 \\ 9 \\ 3 \end{bmatrix}$

Which two rows would you switch?

Example (2nd step of FE)

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -7 & 6 & 1 & 2 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -17 & 12 & 11 & 43 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ -6 \\ 8 \\ 9 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -17 & 12 & 11 & 43 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -7 & 6 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 8 \\ 9 \\ -6 \end{bmatrix}$$

Gaussian Elimination with Partial Pivoting A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps1. Forward Elimination2. Back Substitution

THE END

Gauss Elimination with Partial Pivoting Example

Solve the following set of equations by Gaussian elimination with partial pivoting

25	5	1]	[a	1]		[1	06.8
64	8	1	a_2	2	=	1'	77.2
144	12	1	a_3	3		2	79.2
25	5	1	:	-	106	.8]	
64	8	1	:	-	177	.2	
144	12	1	:	2	279	.2	

Forward Elimination

Number of Steps of Forward Elimination

Number of steps of forward elimination part is (n-1)=(3-1)=2

Forward Elimination: Step 1

- Examine absolute values of first column, first row and below. [25], [64], [144].
- Largest absolute value is 144 and exists in Row 3.
- Switch row 1 and row 3.

 $\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$

Forward Elimination: Step 1 (cont.)

[144	12	1	:	279.2]
64	8	1	:	177.2
l 25	5	1	:	106.8

Divide Row 1 by 144 and multiply it by 64, that is the multiplication factor is 64/144 = 0.4444

 $[144 \ 12 \ 1 \ \vdots \ 279.2] \times 0.4444 = [63.99 \ 5.333 \ 0.4444 \ \vdots \ 124.1]$

Subtract the result from Row 2	-[63.99	5.333	1 0.4444 0.5556	:	177.2] 124.1] 53.10]
Substitute new row for Row 2	$\begin{bmatrix} 144\\0\\25\end{bmatrix}$	12 2.667 5	1 0.5556 1	:	279.2] 53.10 106.8]

Forward Elimination: Step 1 (cont.)

[144	12	1	:	279.2]
0	2.667	0.5556	:	53.10
L 25	5	1	:	106.8

Divide Row 1 by 144 and multiply it by 25, that is the multiplication factor is 25/144 = 0.1736

 $[144 \ 12 \ 1 \ \vdots \ 279.2] \times 0.1736 = [25.00 \ 2.083 \ 0.1736 \ \vdots \ 48.47]$

Subtract the result from	[25	5	1	:	106.8]
	-[25	2.083	0.1736	:	48.47]
Row 3	0]	2.917	0.8264	:	58.33]

Substitute new equation for Row 3

144	12	1	:	279.2]
0	2.667	0.5556	:	53.10
0	2.917	0.8264	:	58.33

Forward Elimination: Step 2

- Examine absolute values of second column, second row and below. [2.667], [2.917]
- Largest absolute value is 2.917 and exists in row 3.
- Switch row 2 and row 3.

 $\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \end{bmatrix}$

Forward Elimination: Step 2 (cont.)

[144	12	1	:	279.2]	
0	2.917	0.8264	:	58.33	
L O	2.667	0.5556	:	53.10	

Divide Row 2 by 2.917 and multiply it by 2.667, that is the multiplication factor is 2.667/2.917 = 0.9143

[0	2.917	0.8264	:	58.33] ×	0.914	43 = [0	2.667	0.7556	:	53.33]
	btract uatior	the re	sult	t from				0.5556 0.7556		
LY	uution	1.5				[0	0	- 0.2	•	-0.23]

Substitute new equation for	
Equation 3	

[144	12	1	:	279.2	
0	2.917	0.8264	:	58.33	
0	0	-0.2	:	-0.23	

Back Substitution

Back Substitution

 $\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 0 & -0.2 & \vdots & -0.23 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.917 & 0.8264 \\ 0 & 0 & -0.2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 279.2 \\ 58.33 \\ -0.23 \end{bmatrix}$

Solving for a_3

$$-0.2a_3 = -0.23$$
$$a_3 = \frac{-0.23}{-0.23}$$
$$= 1.15$$

Back Substitution (cont.)

[144	12	1]	$\begin{bmatrix} a_1 \end{bmatrix}$		279.2	
0	2.917	$\begin{bmatrix} 1 \\ 0.8264 \\ -0.2 \end{bmatrix}$	a_2	=	58.33	
L O	0	-0.2	$\begin{bmatrix} a_3 \end{bmatrix}$		-0.23	

Solving for a_2

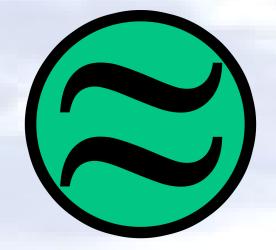
$$2.917a_{2} + 0.8264a_{3} = 58.33$$

$$a_{2} = \frac{58.33 - 0.8264a_{3}}{2.917}$$

$$= \frac{58.33 - 0.8264 \times 1.15}{2.917}$$

$$= 19.67$$

Back Substitution (cont.)


[144	12	1]	$\begin{bmatrix} a_1 \end{bmatrix}$		[279.2]	
0	2.917	$\begin{bmatrix} 1 \\ 0.8264 \\ -0.2 \end{bmatrix}$	a_2	=	58.33	
6	0	-0.2 J	$\lfloor a_3 \rfloor$		L-0.23	

$$144a_{1} + 12a_{2} + a_{3} = \frac{279.2}{279.2 - 12a_{2} - a_{3}}$$
$$a_{1} = \frac{\frac{279.2 - 12a_{2} - a_{3}}{144}}{\frac{279.2 - 12 \times 19.67 - 1.15}{144}}$$
$$= 0.2917$$

Gaussian Elimination with Partial Pivoting Solution

 $\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$

 $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.2917 \\ 19.67 \\ 1.15 \end{bmatrix}$

MathForCollege.com Open Education Resources