Ordinary Differential Equations

Everything is ordinary about them

http://nm.mathforcollege.com

1

3

Class $3\frac{dy}{dx}$	ify the differential equation $+2y=e^x,\;y(0)=5$	T
ı	linear	0%
ı	nonlinear	0%
ı	linear with fixed constants	0%
1	indeterminable to be linear or nonlinear	0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollex.com/app	- 5

5

1

Classif $3x^3 \frac{dg}{dz}$	by the differential equation $rac{y}{x} + 2x^2y = e^x, \; y(0) = 5$	
	linear	
		0%
	nonlinear	
		0%
	linear with fixed constants	
		0%
l .	indeterminable to be linear or nonlinear	
		0%
)	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

Classify the differential equation $3\frac{dy}{dx}+2y^2=e^x,\ y(0)=5$ linear

O% nonlinear

O% linear with fixed constants

O% indeterminable to be linear or nonlinear

O%

Velocity of a body $\frac{dx}{dt} = e^{2t} + 5, \ x(0) = 0$ $\frac{dx}{dt} = e^{2t} + 5, \ x(0) = 5$ The velocity of a body is given by $v(t) = e^{2t} + 5, t \ge 0$ Then the distance covered by the body from t = 0 to t = 10 can be calculated by solving the differential equation for x(10) for $\frac{dx}{dt} = 2e^{2t} + 5, \ x(0) = 0$ $\frac{dx}{dt} = \frac{e^{2t}}{2} + 5t, \ x(0) = 0$ O%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

8

To solve $y'=f(x,y),\ y(0)=y_0,$ the Euler's method formula is given by y=y+f(x,y)h $y_{i+1}=y_i+f(x_i,y_i)h$ $y_{i+1}=y_i+f'(x_i,y_i)h$ $y_{i+1}=f(x_i,y_i)h$ 0% $y_{i+1}=f(x_i,y_i)h$ 0% Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

The order of accuracy from initial point to final point (global truncation error order) while using more than one step in Euler's method is ₩0 O(h)0% $O(h^2)$ 0% $O(h^3)$ 0% $O(h^4)$ 0%

11

12 13