$$\int_{-1}^{1} g(x)dx \approx \sum_{i=1}^{n} c_i g(x_i) \tag{3}$$

Points	Weighting Factors	Function Arguments
1	$c_1 = 2.000000000$	$x_1 = 0.000000000$
2	$c_1 = 1.000000000$	$x_1 = -0.577350269$
	$c_2 = 1.000000000$	$x_2 = 0.577350269$
3	$c_1 = 0.55555556$	$x_1 = -0.774596669$
	$c_2 = 0.888888889$	$x_2 = 0.000000000$
	$c_3 = 0.555555556$	$x_3 = 0.774596669$
4	$c_1 = 0.347854845$	$x_1 = -0.861136312$
	$c_2 = 0.652145155$	$x_2 = -0.339981044$
	$c_3 = 0.652145155$	$x_3 = 0.339981044$
	$c_4 = 0.347854845$	$x_4 = 0.861136312$
5	$c_1 = 0.236926885$	$x_1 = -0.906179846$
	$c_2 = 0.478628670$	$x_2 = -0.538469310$
	$c_3 = 0.568888889$	$x_3 = 0.000000000$
	$c_4 = 0.478628670$	$x_4 = 0.538469310$
	$c_5 = 0.236926885$	$x_5 = 0.906179846$
6	$c_1 = 0.171324492$	$x_1 = -0.932469514$
	$c_2 = 0.360761573$	$x_2 = -0.661209386$
	$c_3 = 0.467913935$	$x_3 = -0.238619186$
	$c_4 = 0.467913935$	$x_4 = 0.238619186$
	$c_5 = 0.360761573$	$x_5 = 0.661209386$
	$c_6 = 0.171324492$	$x_6 = 0.932469514$

Table 1 Weighting factors c and function arguments x used in Gauss quadrature formulas

So if the table is given for integrals with [-1,1] integration limits, how does one solve for integrals with [a,b] integration limits.

The answer lies in that any integral with limits of [a, b] can be converted into an integral with limits [-1, 1]. Let

$$x = mt + c \tag{4}$$

If x = a, then t = -1If x = b, then t = +1such that

$$a = m(-1) + c$$

$$b = m(1) + c \qquad (5a, b)$$

Solving the two Equations (5a) and (5b) simultaneously gives