Chapter 07.05
Gaussian Quadrature Rule of Integration

Lesson: Higher point Gauss quadrature formulas

After successful completion of this lesson, you should be able to:
1) apply higher point Gauss quadrature formulas to estimate integrals
2) use table of abscissas and weights from a table to apply Gauss quadrature rule.

We have discussed one-point and two-point Gauss quadrature rules in a previous lesson. So, how
do higher point Gauss quadrature rules work. For example, the three-point Gauss quadrature rule
is given by
b

J, FeOdx = c1f (x1) + cof (x2) + c3f (x3) (17)
The coefficients ¢4, ¢, and c3, and the function arguments x4, x, and x5 are calculated by assuming
the formula gives exact expressions for integrating a fifth order polynomial

f:(ao + ayx + ayx? + azx® + ax* + asx®)dx.
General n -point rules would approximate an integral as

L2 FO0dx = ¢ f (1) + Cf () +ennn.. +e,f(x,) (18)

Arguments and weighing factors for n-point Gauss quadrature rules
In handbooks (see Table 1), coefficients and arguments for n-point Gauss quadrature rule are not

given for integrals of the form f: f (x)dx but for integrals of the form f_ll g(x)dx, that is,

1
JZ,9C)dx = iy cig(x:) (19)
Table 1 Weighting factors ¢ and function arguments x used in Gauss quadrature formulas
Weighting Function
Points | Factors Arguments

2 ¢; = 1.000000000 | x; = —0.577350269
c, = 1.000000000 | x, = 0.577350269

3 | ¢ =0.555555556 | x; = —0.774596669
¢, = 0.888888889 | x, = 0.000000000
¢3 = 0.555555556 | x5 = 0.774596669

4 c1 = 0.347854845 | x; = —0.861136312
c, = 0.652145155 | x, = —0.339981044
c3 = 0.652145155 | x3 = 0.339981044
c, = 0.347854845 | x, = 0.861136312




So if the table is given for f_11 g(x)dx integrals, how does one solve f: f(x)dx?

c1 = 0.236926885
c, = 0.478628670
c3 = 0.568888889
c, = 0.478628670
cs = 0.236926885

c1 = 0.171324492
c, = 0.360761573
c3 = 0.467913935
c, = 0.467913935
cs = 0.360761573
e = 0.171324492

x, = —0.906179846
x, = —0.538469310

x3 = 0.000000000
x4 = 0.538469310
x5 = 0.906179846

x; = —0.932469514
x, = —0.661209386
x3 = —0.238619186

x4 = 0.238619186
x5 = 0.661209386
xe = 0.932469514

The answer lies in that any integral with limits of [a, b] can be converted into an integral with

limits [—1,1]. Let
x=mt+c

Ifx =a,thent = —1
Ifx =b,thent = +1

such that

a=m(—-1)+c
b=m()+c
Solving the two Equations (21) simultaneously gives

b—a

m =

Substituting our values of x and dx into the integral gives us

[ fGodx = [ f (S0x+ 22

274 dx

b+a) b
2

(20)

21)

(22)

(23)

Hence any integral of the form f: f(x)dx can be converted to an f_ll g(x)dx, and hence Table 1
can be used to estimate integrals.



Example 4

Use two-point Gauss quadrature rule to approximate the distance covered by a rocket from t = 8
to t = 30 as given by
140000

x= [ (2000 In [m] - 9.8t) dt

Change the limits so that one can use the weights and abscissas given in Table 1. Also, find the
absolute relative true error.
Solution

First, change the limits of integration from [8,30] to [—1,1] using Equation(23) gives

Eof(t)dt _ 302— 8f_1lf (30 -8 30+ 8) i

2 2
=11 [ f(11x + 19)dx
Next, get weighting factors and function argument values from Table 1 for the two-point rule,
c; = 1.000000000.
x; = —0.577350269
¢, = 1.000000000
x, = 0.577350269
Now we can use the Gauss quadrature formula

11 flf(llx +19)dx ~ 11[c; f(11x, + 19) + ¢, f(11x, + 19)]
-1

= 11[f(11(-0.5773503) + 19) + f(11(0.5773503) + 19)]
= 11[f(12.64915) + f(25.35085)]
= 11[(296.8317) + (708.4811)]
= 11058.44m
since
12.64915 20001 140000
Faz. )= n 140000 — 2100(12.64915)
= 296.8317
140000

f(25.35085) = 2000 in [140000 —2100(25.35085)
= 708.4811
The absolute relative true error, |€,|, is (True value = 11061.34 m)
11061.34 — 11058.44-| % 100

€l = 11061.34
= 0.0262%

] —9.8(12.64915)

] — 9.8(25.35085)

Example 5

Use three-point Gauss quadrature rule to approximate the distance covered by a rocket fromt = 8
to t = 30 as given by
140000

x= [ (2000 In [m] - 9.8t) dt

Change the limits so that one can use the weights and abscissas given in Table 1. Also, find the
absolute relative true error.



Solution

First, change the limits of integration from [8,30] to [—1,1] using Equation (23) gives

30 30-8 (! (30—8 30+8
] F(O)dt = f f( X+ )dx
. 2 ).\ 2

=111 f(11x + 19)dx
The weighting factors and function argument values are
¢, = 0.555555556
x1 = —0.774596669
c, = 0.888888889
x, = 0.000000000
c3 = 0.555555556
x3 = 0.774596669
and the formula is

111 f(11x + 19)dx = 11[c; f(11x; + 19) + ¢, f (11x, + 19) + c3f (1125 + 19)]

_ 11[0-5555556f(11(~.7745967) + 19) + 0.8888889f (11(0.0000000) + 19)
= 7 |40.5555556£(11(0.7745967) + 19)
= 11[0.55556f (10.47944) + 0.88889f(19.00000) + 0.55556f (27.52056)]

= 11[0.55556 x 239.3327 + 0.88889 X 484.7455 + 0.55556 X 795.1069]

=11061.31m
since
10.47944) = 20001 - 140000 - 9.8(10.47944
f(o. )= n 140000 — 2100(10.47944)] 8(10. )
= 239.3327
19.00000) = 20001 - 140000 - 9.8(19.00000
fFQs. )= n 140000 — 2100(19.00000) ] 8(19. )
= 484.7455
27.52056) = 20001 - 140000 - 9.8(27.52056
f@7. )= n 140000 — 2100(27.52056) ] 8(27. )
= 795.1069

The absolute relative true error, |€;], is (True value = 11061.34 m)
e, = 11061.34 — 11061.31 % 100
v 11061.34

= 0.0003%

So does Gaussian quadrature require that the integral must be transformed to the integral
limit of [-1,1]?

No, the limits do not need to be transformed. Gaussian quadrature rule can be written for any
limits of integration.



It is just the weights and abscissas are given for the limits of integration of [-1,1]. So if the n-point
Gaussian quadrature rule for [-1,1] limits is given as

1
f—l g(x)dx =~ Z?:l Cig(xi)a
and we also know that

Lbf(x)dxzb;aj'—llf(b—ax+b+a>dx

2 2

then the n-point Gaussian quadrature rule for [a,b] limits of integration can be also found.

fabf(x)dx=b_af11f(b_ax+b+a>dx

2 2 2

b—ax b—a b+a
2 ch-f( 2 G 2)

2
n

1
b—a b—a b+a
Z 2 Cl'f( 7 it )

~
=~
~
~

=1
= i1 Gf (X))
where
b_
Ci_ zaCl
b—a b+a
Xl = > X; + >
Appendix
Example 1

For an integral f_l . f (x)dx, derive the two-point Gauss quadrature rule

| FOdx > euf ) + eaf ()

where
¢ =1
c, =1
1
xl = —E
1
X2 = E
Solution

Assuming the formula

1
f_l f)dx = cif (x1) + c2f (x2)
(E1.1)
gives exact values for integrals f_ll 1dx, f_ll xdx, f_llxzdx, and f_ll x3dx . Then



f_111d3c=2=cl+c2

(E1.2)
f_ll xdx =0 = c1x; + %, (E1.3)
f_ll x%dx = g = 1%1% + cpx52
(E1.4)
f_ll x3dx =0 = ¢c;x3 + %53
(EL.5)
Multiplying Equation (E1.3) by x;2 and subtracting from Equation (E1.5) gives
Cx (12 —x,2) =0 (E1.6)

The solution to the above equation is
¢, = 0, or/and
x, = 0, or/and
X1 = X, or/and
X; = —X5.
I. ¢, = 0isnot acceptable as Equations (E1.2-E1.5) reduce to ¢; = 2, ¢;x; = 0, ¢1x% = g, and

c,x3 = 0. Butsince ¢; = 2, then x; = 0 from c;x; = 0, but x; = 0 conflicts with ¢;x? =
2

II. ;2 = 0 is not acceptable as Equations (E1.2-E1.5) reduce to ¢; + ¢, = 2, ¢;x; = 0, ¢x% =
g, and ¢;x3 = 0. Since ¢;x; = 0, then ¢; or x; has to be zero but this violates c;x? = % * 0.
II. x; = x, is not acceptable as Equations (E1.2-E1.5) reduce to c; + ¢, = 2, ¢c1x1 + ¢ = 0,
1 x2 + cyx,? = %, and c;x3 + c,x3 = 0. If x; # 0, then ¢;x; + cyx; = 0 gives ¢; + ¢, =

0 and that violates ¢; + ¢, = 2. If x; = 0, then that violates ¢;x? + c,x,2 = g * 0.

That leaves the solution of x; = —x, as the only possible acceptable solution and in fact, it does
not have violations (see it for yourself)

X, = —X, (E1.7)
Substituting (E1.7) in Equation (E1.3) gives

C1=0Cy (E1.8)
From Equations (E1.2) and (E1.8),

c1=c,=1 (E1.9)
Equations (E1.4) and (E1.9) gives

X2 +x2 =2 (E1.10)

3
Since Equation (E1.7) requires that the two results be of opposite sign, we get

1
NE]
1
X, =—

V3
Hence

[1 f(0dx = cof (x1) + cof (x2) EL1D)
=f(-%)+7 (%)

X, =—



Example 3
What would be the formula for

[r@)dx=c /@) +e, ()

) . ) b .

if you want the above formula to give you exact values of integral fa (agx + byx?)dx, that is, a
linear combination of x and x?2.

Solution

If the formula is exact for a linear combination of x and x?2, then

jxdx = b —a’

=c,a+c,b
3_,43
[7 x?dx = % = c1a? + ¢b? (E3.1)
Solving the two Equations (E3.1) simultaneously gives

2 2
a

a b (O _ 2
a> blle,| |’ -a’
3

_l—ab—b2 +2a’
6 a

1 a?+ab—-2b?
6 b

¢ =
c, = (E3.2)
So

b 1 —ab-b%+2a? 1 a2+ab-2b2
J, fdx = —==—==—"—f(a) = - ——— f (b) (E3.3)
Let us see if the formula works.

Evaluate f:(Zx2 — 3x)dx using Equation(E3.3)

5
j (2x% — 3x)dx ~ ¢, f(a) + c,f(b)

—(2)(5) —5* +2(2)*
2

122+ 2(5) — 2(5)?
R O 10)

[2(2)* - 3(2)]

= 46.5
The exact value of f25(2x2 — 3x)dx is given by

> 2x3 3x2)°
f(2x2—3x)dx= —_—
2

1
6

3 2 |,

= 46.5
Any surprises?
Now evaluate fzs 3dx using Equation (E3.3)

5
jSquﬂ@+Qﬂm



_ _172059-5%+2(2)%
T 6 2

= 10.35
The exact value of fzs 3dx is given by
fzs 3dx = [3x]3
=9
Because the formula will only give exact values for linear combinations of x and x?2, it does not

_ 122+2(5)—2(5)Z

(3) — LZHOZEOL (3

work exactly even for a simple integral of fzs 3dx.
Do you see now why we chose ag + a,x as the integrand for which the formula

b
]f@wxzqﬂ®+Qﬂm

gives us exact values?
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