Conceptual Questions Chapter 04.01 Simultaneous Linear Equations

Last Name _____ First Name _____ Date ___ Group#____ Last Name Initial ___

1) A square matrix [A] is upper triangular if

Individual Attempt	Group Attempt
A. $a_{ij} = 0, i > j$	A. $a_{ij} = 0, i > j$
B. $a_{ij} = 0, j > i$	B. $a_{ij} = 0, j > i$
C. $a_{ij} \neq 0, i > j$	C. $a_{ij} \neq 0, i > j$
D. $a_{ij} \neq 0, j > i$	D. $a_{ij} \neq 0, j > i$

Justification/ Work _____

2) The following system of equations

x + y = 2, 6x + 6y = 12.has _______ solution(s).

Individual Attempt	Group Attempt
A. no	A. no
B. one	B. one
C. more than one but a finite number of	C. more than one but a finite number of
D. infinite	D. infinite

Conceptual Questions Chapter 04.01 Simultaneous Linear Equations

Last Name	First Name	Date	Group#	Last Name Initial
		Duto	_ • • • • • • • • <u>-</u>	

3) The following data is given for the velocity of the rocket as a function of time. To find the velocity at t = 21s, you are asked to use a quadratic polynomial $v(t) = at^2 + bt + c$ to approximate the velocity profile.

<i>t</i> (s)	0	14	15	20	30	35
v (m/s)	0	227.04	362.78	517.35	602.97	901.67

Individual Attempt	Group Attempt
$\begin{bmatrix} 196 & 14 & 1 \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 227.04 \end{bmatrix}$	$\begin{bmatrix} 176 & 14 & 1 \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 227.04 \end{bmatrix}$
A. 225 15 1 $b = 362.78$	225 15 1 $b = 362.78$
	A. $\begin{bmatrix} 400 & 20 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 517.35 \end{bmatrix}$
$\begin{bmatrix} 225 & 15 & 1 \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 362.78 \end{bmatrix}$	$\begin{bmatrix} 225 & 15 & 1 \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 362.78 \end{bmatrix}$
$ 400 \ 20 \ 1 b = 517.35 $	$400 \ 20 \ 1 \ b = 517.35$
B. $\begin{bmatrix} 900 & 30 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 602.97 \end{bmatrix}$	B. $\begin{bmatrix} 900 & 30 & 1 \end{bmatrix} c \end{bmatrix} \begin{bmatrix} 602.97 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 0 & 1 \\ 225 & 15 & 1 \\ 400 & 20 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 362.78 \\ 517.35 \end{bmatrix}$	C. $\begin{bmatrix} 0 & 0 & 1 \\ 225 & 15 & 1 \\ 400 & 20 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 362.78 \\ 517.35 \end{bmatrix}$
D. $\begin{bmatrix} 400 & 20 & 1 \\ 900 & 30 & 1 \\ 1225 & 35 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 517.35 \\ 602.97 \\ 901.67 \end{bmatrix}$	D. $\begin{bmatrix} 400 & 20 & 1 \\ 900 & 30 & 1 \\ 1225 & 35 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 517.35 \\ 602.97 \\ 901.67 \end{bmatrix}$

Free Response Questions Chapter 04.01 Introduction to Matrix Algebra

Chapter 04.01 (Set One)

1) By any scientific method, find the second column of the inverse of

 $\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 13 \end{bmatrix}$

2) Solve [A][X] = [B] for [X] if

$$[A]^{-1} = \begin{bmatrix} 10 & -7 & 0\\ 2 & 2 & 5\\ 2 & 0 & 6 \end{bmatrix} \text{ and } [B] = \begin{bmatrix} 7\\ 2.5\\ 6.012 \end{bmatrix}$$

3) Let [A] be a 3×3 matrix. Suppose

$$[X] = \begin{bmatrix} 7\\ 2.5\\ 6.012 \end{bmatrix}$$

is a solution to the homogeneous set of equations [A][X] = [0] (the right hand side is a zero vector of order 3×1). Does [A] have an inverse? Justify your answer.

Answers <u>Chapter 04.01 (Set One)</u> 1) $\begin{bmatrix} 0.667 \\ -0.333 \\ 0 \end{bmatrix}$ 2) $\begin{bmatrix} 52.5 \\ 49.06 \\ 50.072 \end{bmatrix}$

3) Answer is No, but prove it.

Conceptual Questions Chapter 04.06 Naïve-Gauss Elimination Method (Part 1)

Last Name	First Name	Date	Group#	Last Name Initial
		Duic		

1) Using 3 significant digit with *chopping* at all stages, the result for the following calculation is

$$x_1 = \frac{6.095 - 3.456 \times 1.99}{8}$$

Individual Attempt	Group Attempt	
A0.0988	A0.0988	
B0.0978	B0.0978	
C0.0969	C0.0969	
D0.0962	D0.0962	

Conceptual Questions Chapter 04.06 Naïve-Gauss Elimination Method (Part 1)

Last Name	First Name	Date	Group#	Last Name Initial

2) Using 3 significant digits with *rounding-off* at all stages, the result for the following calculation is

$$x_1 = \frac{6.095 - 3.456 \times 1.99}{8}$$

Individual Attempt	Group Attempt
A0.0988	A0.0988
B0.0978	B0.0978
C0.0969	C0.0969
D0.0962	D0.0962

Justification/ Work _____

3) Division by zero during forward elimination steps in *Naïve Gaussian elimination* for [*A*][*X*] = [*C*] implies the coefficient matrix [*A*].

Individual Attempt	Group Attempt
A. is invertible	A. is invertible
B. is not invertible	B. is not invertible
C. cannot be determined to be invertible or not	C. cannot be determined to be invertible or not

<u>Conceptual Questions</u> <u>Chapter 04.06 Gaussian Elimination with Partial Pivoting (Part 2)</u>

Last Name	First Name	Date	Group#	Last Name Initial
		Bato		

1) One of the pitfalls of Naïve Gauss Elimination method is

Individual Attempt	Group Attempt
A. large truncation error	A. large truncation error
B. large round-off error	B. large round-off error
C. not able to solve equations with a noninvertible coefficient matrix	C. not able to solve equations with a noninvertible coefficient matrix

Justification/ Work _____

2) Increasing the precision of numbers from single to double in the Naïve Gaussian elimination method

Individual Attempt	Group Attempt				
A. avoids division by zero	A. avoids division by zero				
B. decreases round-off error	B. decreases round-off error				
C. allows equations with a noninvertible coefficient matrix to be solved	C. allows equations with a noninvertible coefficient matrix to be solved				

<u>Conceptual Questions</u> <u>Chapter 04.06 Gaussian Elimination with Partial Pivoting (Part 2)</u>

Last Name First Name Date	Group# Last Name Initial
---------------------------	--------------------------

3) Division by zero during forward elimination steps in *Gaussian elimination with partial pivoting* of the set of equations [A][X] = [C] implies the coefficient matrix [A].

Individual Attempt	Group Attempt				
A. is invertible	A. is invertible				
B. is not invertible	B. is not invertible				
C. cannot be determined to be invertible or not	C. cannot be determined to be invertible or not				

Free Response Questions Chapter 04.06 Gauss Elimination

Chapter 04.06 (Set One)

- 1) Using forward elimination, find the determinant of the matrix below
 - $\begin{bmatrix} 2 & 5 & 7 \\ 13 & 12 & 3 \\ 11 & 7 & 32 \end{bmatrix}$
- 2) What is the value of a_{32} of the coefficient matrix A at the end of the first step of forward elimination of Gauss elimination with partial pivoting?
 - $\begin{bmatrix} 5 & 6 & 10 \\ 8 & 12 & 11 \\ 16 & 4 & 13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 21 \\ 19 \\ 37 \end{bmatrix}$
- 3) What is the minimum number of zero elements in a 418×418 coefficient matrix at the end of 100 steps of forward elimination?

Chapter 04.06 (Set Two)

1) At the end of Gauss Elimination steps on a set of three equations, I obtain the following system of equations.

[10	-7	0]	<i>x</i> ₁		7	
0	2.567	5	<i>x</i> ₂	=	2.5	ĺ
0	0	6.022	<i>x</i> ₃		6.012	

Now using a computer that uses only **three** significant digits with **chopping**, what is the value of unknowns using back substitution? **Show all your intermediate work.**

2) At the *end of the first step* of forward elimination in the Gauss elimination with partial pivoting method algorithm, the equations obtained in matrix form on a given set of equations are as follows.

2	4	6	10	$\begin{bmatrix} a \end{bmatrix}$		1	
0	16	24	16	b	_	24 64	
0	32	42		с	_	64	
0	24	36	29	d		96	

Conduct only the *second step of forward elimination* of Gauss elimination with partial pivoting method and show the result in matrix form. Show your work for full credit and put your final answer in the box.

Free Response Questions Chapter 04.06 Gauss Elimination

3) Find the determinant of this matrix by a method learned in this class (cofactor method is not allowed). Show your work for full credit and put your final answer in the box.

2	4	6	10
0	16	24	16
0	32	42	17
0	24	36	29

Answers

Chapter 04.06 (Set One)

- 1) -1476.0
- 2) 4.75
- 3) 36750

 $\begin{array}{c} \textbf{Chapter 04.06 (Set Two)} \\ 1) \ x_1 = 0.020 \ , x_2 = -0.972 \ , \ x_3 = 0.998 \\ 2) \begin{bmatrix} 2 & 4 & 6 & 10 \\ 0 & 32 & 42 & 17 \\ 0 & 0 & 3 & 7.5 \\ 0 & 0 & 4.5 & 16.25 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 64 \\ -8 \\ 48 \end{bmatrix}$

