Nonlinear Equations

Your nonlinearity confuses me

 $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$

tanh(x) = x

For the trunnion-hub problem discussed on first day of class where we were seeking contraction of 0.015", did the trunnion shrink enough when dipped in dry-ice/alcohol mixture?

- 1. Yes
- 2. No

Example – Mechanical Engineering

Since the answer was a resounding NO, a logical question to ask would be:

If the temperature of -108°F is not enough for the contraction, what is?

Finding The Temperature of the Fluid

$$\Delta D = D \int_{T_{\alpha}}^{T_{c}} \alpha(T) dT$$

$$T_{a} = 80^{\circ}F$$

$$T_{c} = ???^{\circ}F$$

$$D = 12.363"$$

$$\Delta D = -0.015"$$

$$\alpha(T) = 6.033 + 0.009696T$$

$$-0.015$$

$$= 12.363 \int_{T_{c}}^{T_{c}} (6.033 + 0.009696T) dT$$

$$-0.015 = 5.992 \times 10^{-8}T_{c}^{2} + 7.457 \times 10^{-5}T_{c} - 6.349 \times 10^{-3}$$

 $f(T_c) = 5.992 \times 10^{-8} T_c^2 + 7.457 \times 10^{-5} T_c + 8.651 \times 10^{-3} = 0$

Finding The Temperature of the Fluid

$$\alpha = -1.228 \times 10^{-5}T^{2} + 6.195 \times 10^{-3}T + 6.015$$

$$-0.015 = 12.363 \int_{80}^{T_{c}} (-1.228 \times 10^{-5}T^{2} + 6.195 \times 10^{-3}T + 6.015)(1 \times 10^{-6}) dT$$

$$-0.015 = -5.059 \times 10^{-11}T_{c}^{-3} + 3.829 \times 10^{-8}T_{c}^{-2} + 7.435 \times 10^{-5}T_{c} - 6.166 \times 10^{-3}$$

$$F(T_{c}) = -5.059 \times 10^{-11}T_{c}^{-3} + 3.829 \times 10^{-8}T_{c}^{-2} + 7.435 \times 10^{-5}T_{c} + 8.834 \times 10^{-3} = 0$$

How tall can a vertical mast be

$$1 + \sum_{n=1}^{\infty} c_n \beta^n = 0$$

$$c_1 = -\frac{3}{8}$$

$$c_n = -\frac{3c_{n-1}}{4n(3n-1)}, n = 2,3,...$$

$$L = \left(\frac{9\beta EI}{4w}\right)^{\frac{1}{3}}$$

E = Young's modulus of elasticity, I = second moment of area, w = weight per unit length

Thanks to Markus Gjengaar for sharing their work on Unsplash.

Nonlinear Equations (Background)

"The problem of not knowing what we missed is that we believe we haven't missed anything" – Stephen Chew on Multitasking

http://nm.MathForCollege.com Numerical Methods for the STEM undergraduate