

Determinants

If a multiple of one row of $[A]_{nxn}$ is added or subtracted to another row of $[A]_{nxn}$ to result in $[B]_{nxn}$ then det(A)=det(B)

The determinant of an upper triangular matrix [A]_{nxn} is given by det (A) = $a_{11} \times a_{22} \times ... \times a_{ii} \times ... \times a_{nn} = \prod_{i=1}^{n} a_{ii}$

Using forward elimination to transform $[A]_{nxn}$ to an upper triangular matrix, $[U]_{nxn}$.

 $[A]_{n \times n} \to [U]_{n \times n}$ $\det (A) = \det (U)$

http://nm.mathforcollege.com

