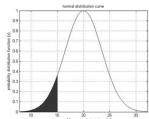
Introduction to Scientific Computing

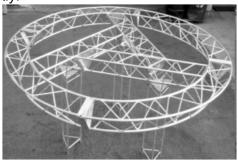
http://nm.MathForCollege.com

Transforming Numerical Methods Education for STEM Undergraduates


1/4/2018

http://nm.MathForCollege.com

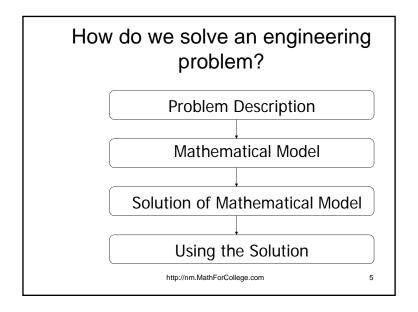
Why use Numerical Methods?

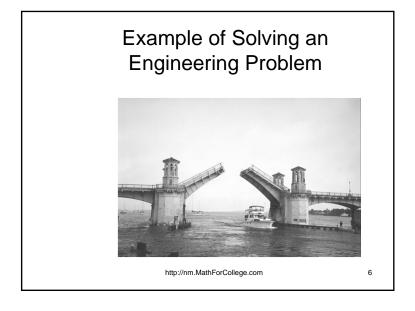

• To solve problems that cannot be solved exactly

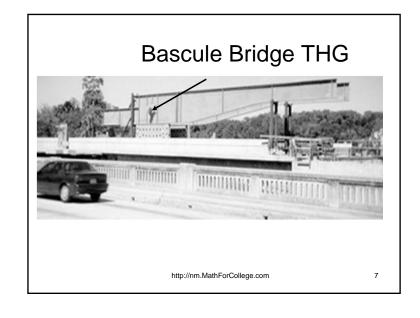
$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{u^2}{2}}du$$

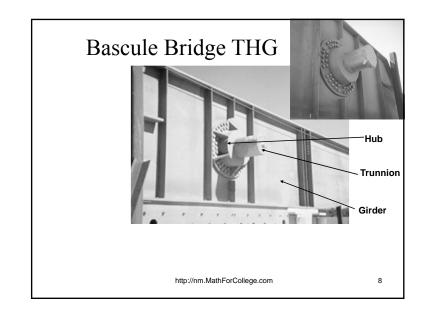
Why use Numerical Methods?

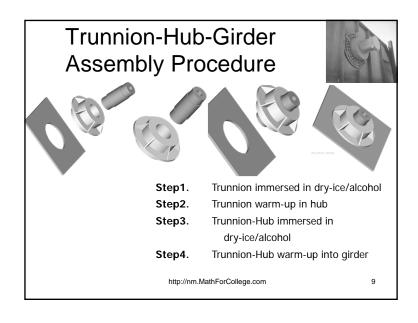
• To solve problems that are intractable to solve exactly!



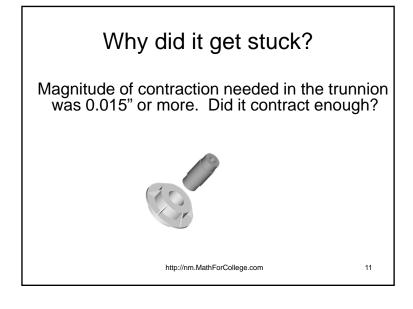

Steps in Solving an Engineering Problem

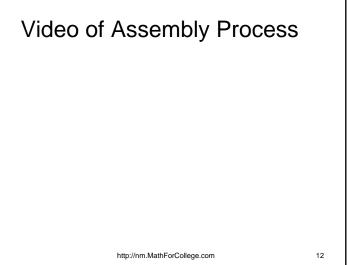

http://nm.MathForCollege.com

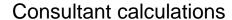

http://nm.MathForCollege.com


4





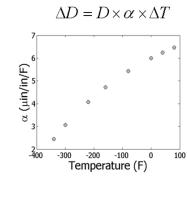




$$\Delta D = D \times \alpha \times \Delta T$$

$$D = 12.363''$$

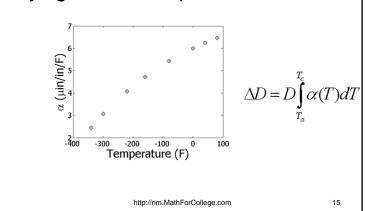
$$\alpha = 6.47 \times 10^{-6} in/in/^{o} F$$


$$\Delta T = -108 - 80 = -188^{o} F$$

$$\Delta D = (12.363)(6.47 \times 10^{-6})(-188)$$
$$= -0.01504$$
"

http://nm.MathForCollege.com

13


Is the formula used correct?


α (μin/in/°F)
2 45
2.70
3.07
4.08
4.72
5.43
6.00
6.24
6.47

http://nm.MathForCollege.com

The Correct Model Would Account for Varying Thermal Expansion Coefficient

Can You Roughly Estimate the Contraction?

Can You Find a Better Estimate for the Contraction?

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

$$T_a = 80^{\circ}F$$

$$T_c = -108^{\circ}F$$

$$D = 12.363''$$

$$T_a = 80^{\circ}F$$

$$T_c = -108^{\circ}F$$

$$T_c$$

http://nm.MathForCollege.com

17

19

Estimating Contraction Accurately

Change in diameter (ΔD) by cooling it in dry ice/alcohol is given by $\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$ $T_a = 80^{\circ}F$ $T_c = -108^{\circ}F$ $D = 12.262^{\circ}$

 $T_{\rm c} = -108^{\rm e}{\rm F}$ D = 12.363'' -400 -300 -200 -100 0 100 -200 -100 -200 -100 -200 -100 -200 -100 -200 -100 -200

So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321°F as opposed to the dry-ice/alcohol temperature of -108°F.

$$\Delta D = -0.0244''$$

http://nm.MathForCollege.com

Revisiting steps to solve a problem

- 1) Problem Statement: Trunnion got stuck in the hub.
- 2) Modeling: Developed a new model

$$\Delta D = D \int_{T_{\alpha}}^{T_{\epsilon}} \alpha(T) dT$$

- 3) Solution: 1) Used trapezoidal rule OR b) Used regression and integration.
- 4) Implementation: Cool the trunnion in liquid nitrogen. http://nm.MathForCollege.com

http://nm.MathForCollege.com

THE END

http://nm.MathForCollege.com

21

Introduction to Numerical Methods

Mathematical Procedures

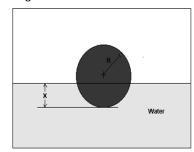
http://nm.MathForCollege.com

http://nm.MathForCollege.com

22

Mathematical Procedures

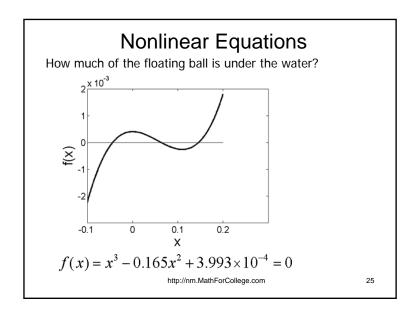
- Nonlinear Equations
- Differentiation
- Simultaneous Linear Equations
- Curve Fitting
 - Interpolation
 - Regression
- Integration
- · Ordinary Differential Equations

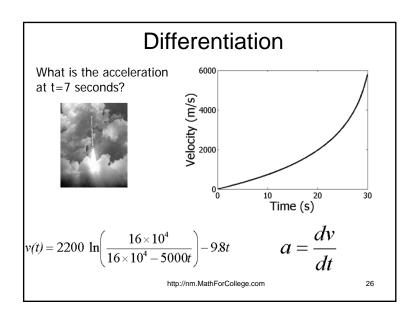

http://nm.MathForCollege.com

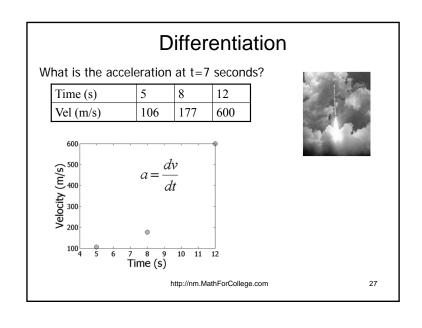
23

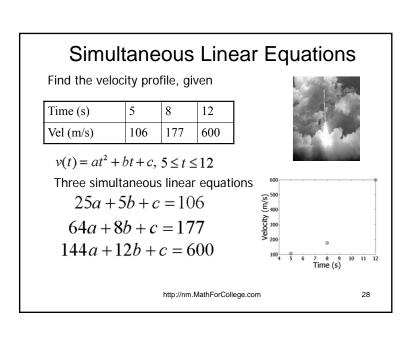
Nonlinear Equations

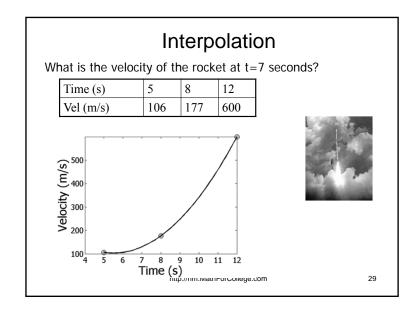
How much of the floating ball is under water?

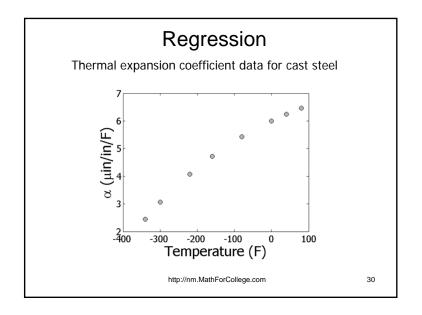

Diameter=0.11m Specific Gravity=0.6

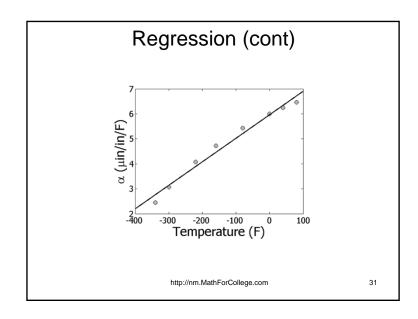


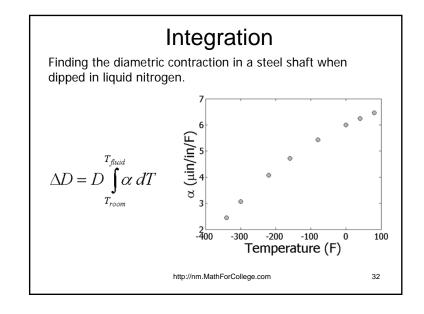

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$


http://nm.MathForCollege.com


24







Ordinary Differential Equations

How long does it take a trunnion to cool down?

$$mc\frac{d\theta}{dt} = -hA(\theta - \theta_a), \ \theta(0) = \theta_{room}$$

http://nm.MathForCollege.com

33

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://nm.MathForCollege.com/topics/introduction_numerical.html

THE END

http://nm.MathForCollege.com