Introduction to Numerical Integration

$$I = 4 \int_0^1 \sqrt{1 - x^2} \, dx$$

As thy a difficult a problem as finding quadrature of a circle

PHYSICAL EXAMPLES

0

Distance Covered By Rocket

$$x = \int_{t_0}^{t_1} \left[u \log_e \left(\frac{m_0}{m_0 - qt} \right) - gt \right] dt$$
$$x = \int_{t_0}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

Concentration of Benzene

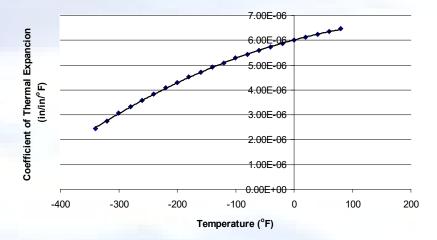
$$erfc(x) = \int_{\infty}^{x} e^{-z^2} dz$$

$$c(x,t) = \frac{c_0}{2} \left[erfc\left(\frac{x-ut}{2\sqrt{Dt}}\right) + e^{\frac{ux}{D}} erfc\left(\frac{x+ut}{2\sqrt{Dt}}\right) \right]$$

u= velocity of ground water flow in the *x* -direction (m/s) D = dispersion coefficient (m²/s) $C_0 =$ initial concentration (kg/m³)

Is Wal*** "short shifting" you?

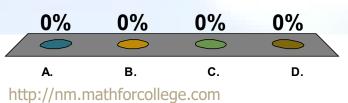
$$P(y \ge a) = \int_{a}^{\infty} f(y) dy = \int_{a}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-(1/2)[(y-\mu)/\sigma]^{2}} dy$$

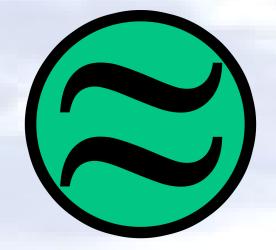

Roll	Number of		
	sheets		
1	253		
2	250		
3	251		
4	252		
5	253		
6	253		
7	252		
8	254		
9	252		
10	252		

 $P(y \ge 250) = \int_{250}^{\infty} 0.3515e^{-0.3881(y-252.2)^2} dy$

Calculating diameter contraction for trunnion-hub problem

$$\Delta D = D \int_{T_{room}}^{T_{fluid}} \alpha dT$$


The distance covered by a rocket from t=8 to t=34 seconds is calculated using multiple segment trapezoidal rule by integrating a velocity function. Below is given the estimated distance for different number of segments, n.


n	1	2	3	4	5
Value	16520	15421	15212	15138	15104

The number of significant digits at least correct in the answer for n=5 is

2

• 3

MathForCollege.com Open Education Resources