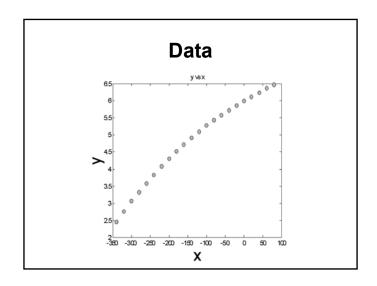
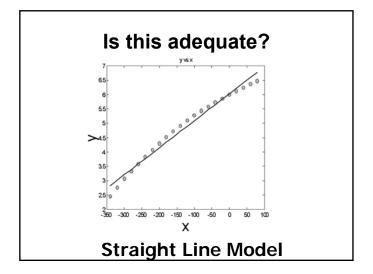
Adequacy of Linear Regression Models http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://mumericalmethods.eng.usf.edu 1





Quality of Fitted Data

- Does the model describe the data adequately?
- How well does the model predict the response variable predictably?

Linear Regression Models

 Limit our discussion to adequacy of straight-line regression models

Four checks

- 1. Plot the data and the model.
- 2. Find standard error of estimate.
- 3. Calculate the coefficient of determination.
- 4. Check if the model meets the assumption of random errors.

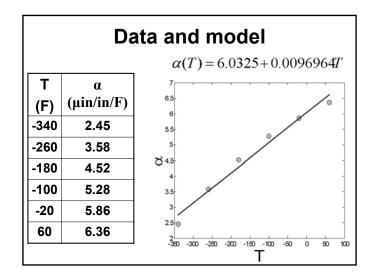
Example: Check the adequacy of the straight line model for given data

$$\alpha = a_0 + a_1 T$$

Т	α
(F)	(µin/in/F)
-340	2.45
-260	3.58
-180	4.52
-100	5.28
-20	5.86
60	6.36

END

1. Plot the data and the model



END

2. Find the standard error of estimate

Standard error of estimate

$$S_{\alpha/T} = \sqrt{\frac{S_r}{n-2}}$$

$$S_r = \sum_{i=1}^{n} (\alpha_i - a_0 - a_1 T_i)^2$$

Standard Error of Estimate

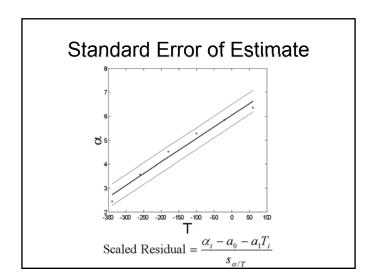
 $\alpha(T) = 6.0325 + 0.0096964T$

T_{i}	α_{i}	$a_0 + a_1 T_i$	$\alpha_i - a_0 - a_1 T_i$
-340	2.45	2.7357	-0.28571
-260	3.58	3.5114	0.068571
-180	4.52	4.2871	0.23286
-100	5.28	5.0629	0.21714
-20	5.86	5.8386	0.021429
60	6.36	6.6143	-0.25429

Standard Error of Estimate

$$S_r = 0.25283$$

$$s_{\alpha/T} = \sqrt{\frac{S_r}{n-2}}$$
$$= \sqrt{\frac{0.25283}{6-2}}$$
$$= 0.25141$$



Scaled Residuals

Scaled Residual = $\frac{\text{Residual}}{\text{Standard Error of Estimate}}$

Scaled Residual =
$$\frac{\alpha_i - a_0 - a_1 T_i}{s_{\alpha/T}}$$

95% of the scaled residuals need to be in [-2,2]

Scaled	Residuals
--------	-----------

$$s_{\alpha/T} = 0.25141$$

T_i	α_i	Residual	Scaled Residual
-340	2.45	-0.28571	-1.1364
-260	3.58	0.068571	0.27275
-180	4.52	0.23286	0.92622
-100	5.28	0.21714	0.86369
-20	5.86	0.021429	0.085235
60	6.36	-0.25429	-1.0115

END

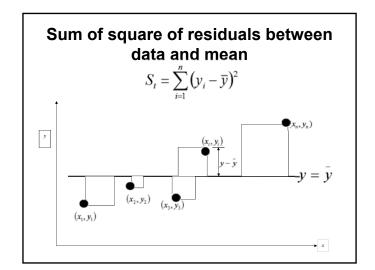
3. Find the coefficient of determination

Coefficient of determination

$$S_{t} = \sum_{i=1}^{n} (\alpha_{i} - \overline{\alpha})^{2}$$

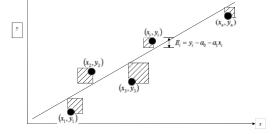
$$S_{r} = \sum_{i=1}^{n} (\alpha_{i} - \alpha_{0} - \alpha_{1}T_{i})^{2}$$

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$



Sum of square of residuals between observed and predicted

$$S_r = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2$$



Limits of Coefficient of Determination

$$r^2 = \frac{S_t - S_r}{S_t}$$

$$0 \le r^2 \le 1$$

Cal	lcu	lation	of	S_t
-----	-----	--------	----	-------

T_{i}	α_{i}	$\alpha_i - \overline{\alpha}$	
-340	2.45	-2.2250	$\overline{\alpha} = 4.6750$
-260	3.58	-1.0950	C = 10.792
-180	4.52	0.15500	$S_t = 10.783$
-100	5.28	0.60500	
-20	5.86	1.1850	
60	6.36	1.6850	

Calculation of
$$S_r$$
 T_i α_i $a_0 + a_1 T_i$ $\alpha_i - a_0 - a_1 T_i$ -3402.452.7357-0.28571-2603.583.51140.068571-1804.524.28710.23286-1005.285.06290.21714-205.865.83860.021429606.366.6143-0.25429

 $S_r = 0.25283$

Coefficient of determination

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$
$$= \frac{10.783 - 0.25283}{10.783}$$
$$= 0.97655$$

Correlation coefficient

$$r = \sqrt{\frac{S_t - S_r}{S_t}}$$
$$= 0.98820$$

How do you know if r is positive or negative?

What does a particular value of |r| mean?

0.8 to 1.0 - Very strong relationship

0.6 to 0.8 - Strong relationship

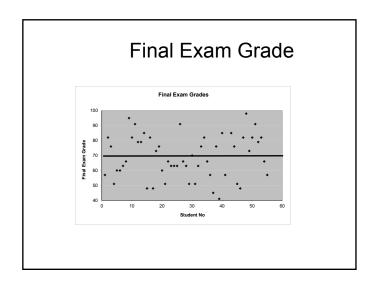
0.4 to 0.6 - Moderate relationship

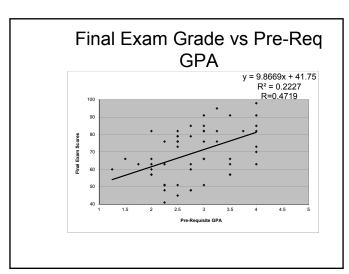
0.2 to 0.4 - Weak relationship

0.0 to 0.2 - Weak or no relationship

Caution in use of r²

- Increase in spread of regressor variable (x) in y vs. x increases r²
- Large regression slope artificially yields high r²
- Large r² does not measure appropriateness of the linear model
- Large r² does not imply regression model will predict accurately





END

4. Model meets assumption of random errors

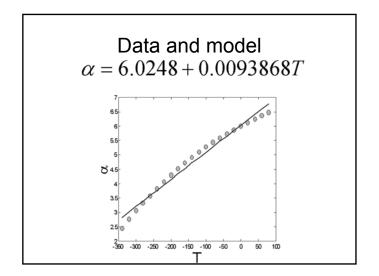
Model meets assumption of random errors

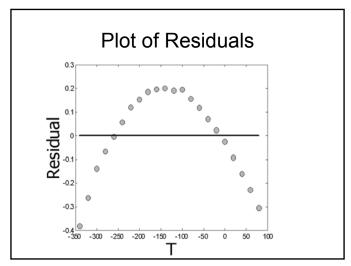
- Residuals are negative as well as positive
- Variation of residuals as a function of the independent variable is random
- Residuals follow a normal distribution
- There is no autocorrelation between the data points.

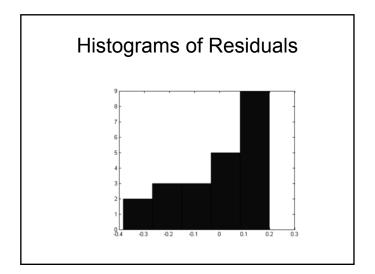
Therm exp coeff vs temperature

Т	α	T	α
60	6.36	-100	5.28
40	6.24	-120	5.09
20	6.12	-140	4.91
0	6.00	-160	4.72
-20	5.86	-180	4.52
-40	5.72	-200	4.30
-60	5.58	-220	4.08
-80	5.43	-240	3.83

T	α
-280	3.33
-300	3.07
-320	2.76
-340	2.45
-340	2.45
-340	2.45



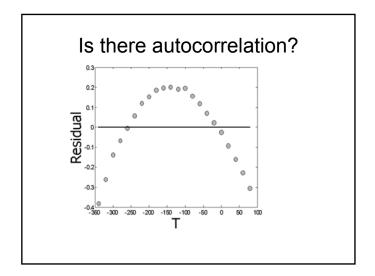


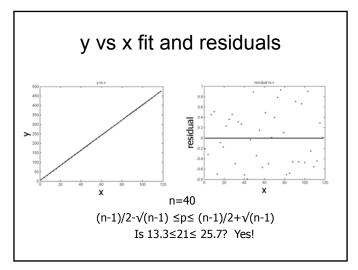


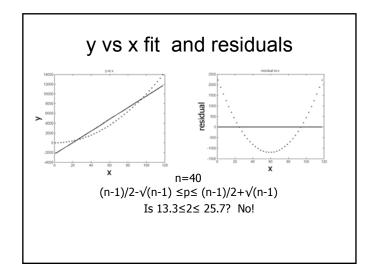
Check for Autocorrelation

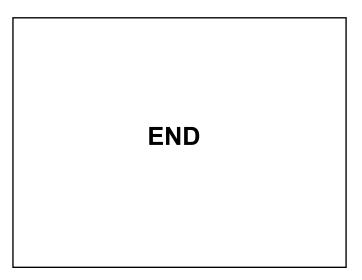
- Find the number of times, *q* the sign of the residual changes for the *n* data points.
- If $(n-1)/2-\sqrt{(n-1)} \le q \le (n-1)/2+\sqrt{(n-1)}$, you most likely do not have an autocorrelation.

$$\frac{(22-1)}{2} - \sqrt{22-1} \le q \le \frac{22-1}{2} + \sqrt{22-1}$$
$$5.9174 \le q \le 15.083$$

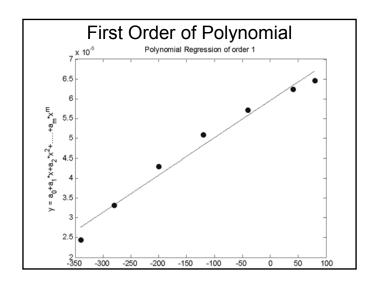


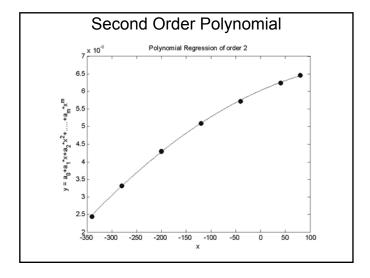


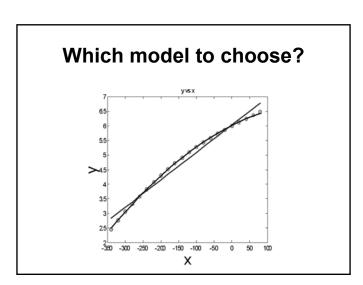


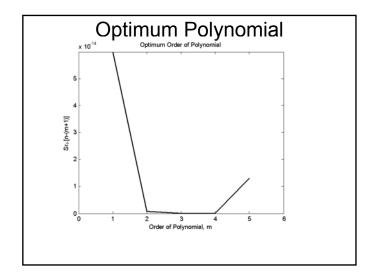


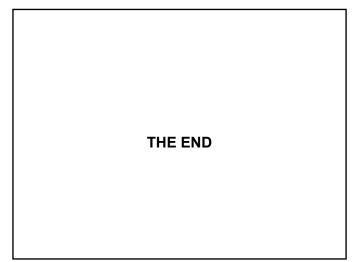
What polynomial model to choose if one needs to be chosen?











Effect of an Outlier

