Adequacy of Linear Regression Models

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

10/19/2020

http://numericalmethods.eng.usf.edu

Therm exp coeff vs temperature

Т	α
80	6.47
60	6.36
40	6.24
20	6.12
0	6.00
-20	5.86
-40	5.2
-60	5.58
-80	5.43
-100	5.28
-120	5.09

Т	α
-140	4.91
-160	4.72
-180	4.52
-200	4.30
-220	4.08
-240	3.83
-260	3.58
-280	3.33
-300	3.07
-320	2.76
-340	2.45

T is in °F α is in µin/in/ °F

Is this adequate?

Straight Line Model

Quality of Fitted Data

- Does the model describe the data adequately?
- How well does the model predict the response variable predictably?

Linear Regression Models

 Limit our discussion to adequacy of straight-line regression models

Four checks

- 1. Does the model look like it explains the data?
- 2. Do 95% of the residuals fall with ±2 standard error of estimate?
- 3. Is the coefficient of determination acceptable?
- 4. Does the model meet the assumption of random errors?

Check 1: Plot Model and Data

Т	α	Т	α	
80	6.47	-140	4.91	o)/ui/ui
60	6.36	-160	4.72	5.5 -
40	6.24	-180	4.52	- 5 -
20	6.12	-200	4.30	
0	6.00	-220	4.08	E 3.5
-20	5.86	-240	3.83	$\alpha = 6.0248 + 0.0093868T$
-40	5.2	-260	3.58	
-60	5.58	-280	3.33	-350 -300 -250 -200 -150 -100 -50 0 50 100 Temperature, T (^o F)
-80	5.43	-300	3.07	
-100	5.28	-320	2.76	
-120	5.09	-340	2.45	

Check 2: Using Standard Error of Estimate

Check 3: Using Coefficient of Determination

$$r^2 = \frac{S_t - S_r}{S_t}$$

 $\frac{27.614 - 0.5785}{27.614}$

=0.9791

Check 4. Does the model meet assumption of random errors?

Model meets assumption of random errors

- Residuals are negative as well as positive
- Variation of residuals as a function of the independent variable is random
- Residuals follow a normal distribution
- There is no autocorrelation between the data points.

Are residuals negative and positive?

Is variation of residuals as a function of independent variable random?

Do the residuals follow normal distribution?

END

What polynomial model to choose if one needs to be chosen?

Which model to choose?

Optimum Polynomial: Wrong Criterion

Both graphs are same Left one starts at m=1 Right one starts at m=2

Optimum Polynomial: Correct Criterion

Both graphs are same Left one starts at m=1 Right one starts at m=2 END

Effect of an Outlier

Effect of Outlier

Effect of Outlier

END

Final Exam Grade

Final Exam Grade vs Pre-Req GPA

