Nonlinear Regression Major: All Engineering Majors Authors: Autar Kaw, Luke Snyder http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates 6/17/2014 http://numericalmethods.eng.usf.edu # Nonlinear Regression ## Nonlinear Regression Some popular nonlinear regression models: - 1. Exponential model: $(y = ae^{bx})$ - 2. Power model: $(y = ax^b)$ - 3. Saturation growth model: $(y = \frac{ax}{b+x})$ - 4. Polynomial model: $(y = a_0 + a_1x + ... + a_mx^m)$ http://numericalmethods.eng.usf.ed ## Nonlinear Regression Given *n* data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit y = f(x) to the data, where f(x) is a nonlinear function of x. Figure. Nonlinear regression model for discrete y vs. x data ## Regression Exponential Model http://numericalmethods.eng.usf.edu ## **Exponential Model** Given $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ best fit $y = ae^{bx}$ to the data. Figure. Exponential model of nonlinear regression for y vs. x data #### Finding Constants of Exponential Model The sum of the square of the residuals is defined as $$S_r = \sum_{i=1}^n \left(y_i - ae^{bx_i} \right)^2$$ Differentiate with respect to a and b $$\frac{\partial S_r}{\partial a} = \sum_{i=1}^n 2(y_i - ae^{bx_i}) (-e^{bx_i}) = 0$$ $$\frac{\partial S_r}{\partial b} = \sum_{i=1}^n 2(y_i - ae^{bx_i}) - ax_i e^{bx_i} = 0$$ http://numericalmethods.eng.usf.edu #### Finding Constants of Exponential Model Rewriting the equations, we obtain $$-\sum_{i=1}^{n} y_i e^{bx_i} + a \sum_{i=1}^{n} e^{2bx_i} = 0$$ $$\sum_{i=1}^{n} y_i x_i e^{bx_i} - a \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$ #### Finding constants of Exponential Model Solving the first equation for a yields $$a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}}$$ Substituting a back into the previous equation $$\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$ The constant *b* can be found through numerical methods such as bisection method. http://numericalmethods.eng.usf.edu ### **Example 1-Exponential Model** Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the techritium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time. **Table.** Relative intensity of radiation as a function of time. | t(hrs) | 0 | 1 | 3 | 5 | 7 | 9 | |--------|-------|-------|-------|-------|-------|-------| | γ | 1.000 | 0.891 | 0.708 | 0.562 | 0.447 | 0.355 | 10 ## Example 1-Exponential Model cont. The relative intensity is related to time by the equation $$\gamma = Ae^{\lambda t}$$ Find: - a) The value of the regression constants A and λ - b) The half-life of Technium-99m - c) Radiation intensity after 24 hours 11 ## Constants of the Model $$\gamma = Ae^{\lambda t}$$ The value of λ is found by solving the nonlinear equation $$f(\lambda) = \sum_{i=1}^{n} \gamma_i t_i e^{\lambda t_i} - \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}} \sum_{i=1}^{n} t_i e^{2\lambda t_i} = 0$$ $$A = \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}}$$ 13 http://numericalmethods.eng.usf.ed ### Setting up the Equation in MATLAB | t (hrs) | 0 | 1 | 3 | 5 | 7 | 9 | |---------|-------|-------|-------|-------|-------|-------| | γ | 1.000 | 0.891 | 0.708 | 0.562 | 0.447 | 0.355 | #### Setting up the Equation in MATLAB $$f(\lambda) = \sum_{i=1}^{n} \gamma_i t_i e^{\lambda t_i} - \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}} \sum_{i=1}^{n} t_i e^{2\lambda t_i} = 0$$ $$\lambda = -0.1151$$ t=[0 1 3 5 7 9] gamma=[1 0.891 0.708 0.562 0.447 0.355] syms lamda sum1=sum(gamma.*t.*exp(lamda*t)); sum2=sum(gamma.*exp(lamda*t)); sum3=sum(exp(2*lamda*t)); sum4=sum(t.*exp(2*lamda*t)); f=sum1-sum2/sum3*sum4; http://numericalmethods.eng.usf.edu ## Calculating the Other Constant The value of A can now be calculated $$A = \frac{\sum_{i=1}^{6} \gamma_{i} e^{\lambda t_{i}}}{\sum_{i=1}^{6} e^{2\lambda t_{i}}} = 0.9998$$ The exponential regression model then is $$\gamma = 0.9998 \, e^{-0.1151t}$$ ## Relative Intensity After 24 hrs The relative intensity of radiation after 24 hours $$\gamma = 0.9998 \times e^{-0.1151(24)}$$ $$=6.3160\times10^{-2}$$ This result implies that only $$\frac{6.316 \times 10^{-2}}{0.9998} \times 100 = 6.317\%$$ radioactive intensity is left after 24 hours. #### Homework - What is the half-life of Technetium 99m isotope? - Write a program in the language of your choice to find the constants of the model. - Compare the constants of this regression model with the one where the data is transformed. - What if the model was $\gamma = e^{\lambda t}$? 10 http://numericalmethods.eng.usf.ed #### THE END http://numericalmethods.eng.usf.edu 20 ### Polynomial Model Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit $y = a_0 + a_1 x + ... + a_m x^m$ $(m \le n - 2)$ to a given data set. Figure. Polynomial model for nonlinear regression of y vs. x data 21 http://numericalmethods.eng.usf.ed ## Polynomial Model cont. The residual at each data point is given by $$E_i = y_i - a_0 - a_1 x_i - \dots - a_m x_i^m$$ The sum of the square of the residuals then is $$S_r = \sum_{i=1}^n E_i^2$$ $$= \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - \ldots - a_m x_i^m)^2$$ 22 ## Polynomial Model cont. To find the constants of the polynomial model, we set the derivatives with respect to a_i where i = 1, ...m, equal to zero. $$\frac{\partial S_r}{\partial a_0} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-1) = 0$$ $$\frac{\partial S_r}{\partial a_0} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-1) = 0$$ $$\frac{\partial S_r}{\partial a_1} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i) = 0$$ $$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$ $$\frac{\partial S_r}{\partial a_m} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i^m) = 0$$ ### Polynomial Model cont. These equations in matrix form are given by $$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_{i}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m}\right) \\ \left(\sum_{i=1}^{n} x_{i}\right) & \left(\sum_{i=1}^{n} x_{i}^{2}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \left(\sum_{i=1}^{n} x_{i}^{m}\right) & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{2m}\right) \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \cdot \\ \cdot \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} \\ \cdot \\ \cdot \\ \cdot \\ \sum_{i=1}^{n} x_{i}^{m} y_{i} \end{bmatrix}$$ The above equations are then solved for a_0, a_1, \dots, a_m ### **Example 2-Polynomial Model** Regress the thermal expansion coefficient vs. temperature data to a second order polynomial. **Table.** Data points for temperature vs α | temperature vs. Q | | | | | | |-------------------|---|--|--|--|--| | Temperature, T | Coefficient of
thermal
expansion, α
(in/in/°F) | | | | | | 80 | 6.47×10 ⁻⁶ | | | | | | 40 | 6.24×10 ⁻⁶ | | | | | | -40 | 5.72×10 ⁻⁶ | | | | | | -120 | 5.09×10 ⁻⁶ | | | | | | -200 | 4.30×10 ⁻⁶ | | | | | | -280 | 3.33×10 ⁻⁶ | | | | | | -340 | 2.45×10 ⁻⁶ | | | | | **Figure.** Data points for thermal expansion coefficient vs temperature. http://numericalmethods.eng.usf.edu ## Example 2-Polynomial Model cont. We are to fit the data to the polynomial regression model $\alpha = a_0 + a_1 T + a_2 T^2$ The coefficients a_0,a_1,a_2 are found by differentiating the sum of the square of the residuals with respect to each variable and setting the values equal to zero to obtain $$\begin{bmatrix} n & \left(\sum_{i=1}^n T_i\right) & \left(\sum_{i=1}^n T_i^2\right) \\ \left(\sum_{i=1}^n T_i\right) & \left(\sum_{i=1}^n T_i^2\right) & \left(\sum_{i=1}^n T_i^3\right) \\ \left(\sum_{i=1}^n T_i^2\right) & \left(\sum_{i=1}^n T_i^3\right) & \left(\sum_{i=1}^n T_i^4\right) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \alpha_i \\ \sum_{i=1}^n T_i & \alpha_i \\ \sum_{i=1}^n T_i^2 & \alpha_i \end{bmatrix}$$ ### Example 2-Polynomial Model cont. The necessary summations are as follows Table. Data points for temperature vs. $\boldsymbol{\alpha}$ | Temperature, T
(°F) | Coefficient of
thermal expansion,
α (in/in/°F) | |------------------------|--| | 80 | 6.47×10 ⁻⁶ | | 40 | 6.24×10 ⁻⁶ | | -40 | 5.72×10 ⁻⁶ | | -120 | 5.09×10 ⁻⁶ | | -200 | 4.30×10 ⁻⁶ | | -280 | 3.33×10 ⁻⁶ | | -340 | 2.45×10 ⁻⁶ | $$\sum_{i=1}^{7} T_i^2 = 2.5580 \times 10^5$$ $$\sum_{i=1}^{7} T_i^3 = -7.0472 \times 10^7$$ $$\sum_{i=1}^{7} T_i^4 = 2.1363 \times 10^{10}$$ $$\sum_{i=1}^{7} \alpha_i = 3.3600 \times 10^{-5}$$ $$\sum_{i=1}^{7} T_i \alpha_i = -2.6978 \times 10^{-3}$$ $$\sum_{i=1}^{7} T_i^2 \alpha_i = 8.5013 \times 10^{-1}$$ 27 http://numericalmethods.eng.usf.ed ### Example 2-Polynomial Model cont. Using these summations, we can now calculate a_0, a_1, a_2 $$\begin{bmatrix} 7.0000 & -8.6000 \times 10^{2} & 2.5800 \times 10^{5} \\ -8.600 \times 10^{2} & 2.5800 \times 10^{5} & -7.0472 \times 10^{7} \\ 2.5800 \times 10^{5} & -7.0472 \times 10^{7} & 2.1363 \times 10^{10} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 3.3600 \times 10^{-5} \\ -2.6978 \times 10^{-3} \\ 8.5013 \times 10^{-1} \end{bmatrix}$$ Solving the above system of simultaneous linear equations we have $$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 6.0217 \times 10^{-6} \\ 6.2782 \times 10^{-9} \\ -1.2218 \times 10^{-11} \end{bmatrix}$$ The polynomial regression model is then $$\alpha = a_0 + a_1 T + a_2 T^2$$ = 6.0217 \times 10^{-6} + 6.2782 \times 10^{-9} T - 1.2218 \times 10^{-11} T^2 28 #### Transformation of Data To find the constants of many nonlinear models, it results in solving simultaneous nonlinear equations. For mathematical convenience, some of the data for such models can be transformed. For example, the data for an exponential model can be transformed. As shown in the previous example, many chemical and physical processes are governed by the equation, $$y = ae^{bx}$$ Taking the natural log of both sides yields, $$\ln y = \ln a + bx$$ Let $$z = \ln y$$ and $a_0 = \ln a$ We now have a linear regression model where $z = a_0 + a_1 x$ (implying) $$a = e^{a_0}$$ with $a_1 = b$ #### Transformation of data cont. Using linear model regression methods, $$a_{1} = \frac{n\sum_{i=1}^{n} x_{i}z_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} z_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$ $$a_0 = \bar{z} - a_1 \bar{x}$$ Once a_a, a_1 are found, the original constants of the model are found as $b = a_1$ $$a = e^{a_0}$$ #### THE END http://numericalmethods.eng.usf.edu 31 ttp://numericalmethods.eng.usf.edu # Example 3-Transformation of data Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time. **Table.** Relative intensity of radiation as a function of time | OI tillie | - | | | | | | |-----------|-------|-------|-------|-------|-------|-------| | t(hrs) | 0 | 1 | 3 | 5 | 7 | 9 | | γ | 1.000 | 0.891 | 0.708 | 0.562 | 0.447 | 0.355 | **Figure.** Data points of relative radiation intensity vs. time 32 # Example 3-Transformation of data cont. Find: - a) The value of the regression constants A and λ - b) The half-life of Technium-99m - c) Radiation intensity after 24 hours The relative intensity is related to time by the equation $$\gamma = Ae^{\lambda t}$$ 22 http://numericalmethods.eng.usf.ed # Example 3-Transformation of data cont. Exponential model given as, $$\gamma = Ae^{\lambda t}$$ $$\ln(\gamma) = \ln(A) + \lambda t$$ Assuming $z = \ln \gamma$, $a_o = \ln(A)$ and $a_1 = \lambda$ we obtain $$z = a_0 + a_1 \iota$$ This is a linear relationship between z and t 34 #### Example 3-Transformation of data cont. Using this linear relationship, we can calculate $\,a_{\scriptscriptstyle 0},a_{\scriptscriptstyle 1}\,$ where $$a_{1} = \frac{n \sum_{i=1}^{n} t_{i} z_{i} - \sum_{i=1}^{n} t_{i} \sum_{i=1}^{n} z_{i}}{n \sum_{i=1}^{n} t_{1}^{2} - \left(\sum_{i=1}^{n} t_{i}\right)^{2}}$$ and $$a_0 = \bar{z} - a_1 \bar{t}$$ $$\lambda = a_{1}$$ $$A = e^{a_0}$$ 35 nttp://numericalmethods.eng.usf.ed # Example 3-Transformation of Data cont. Summations for data Transformation are as follows Table. Summation data for Transformation of data | ıar | Table. Summation data for Transformation of data | | | | | | | |-----|--|------------|--------------------------|-----------|---------|--|--| | | | | model | | | | | | i | t_i | γ_i | $z_{i} = \ln \gamma_{i}$ | $t_i z_i$ | t_i^2 | | | | 1 | 0 | 1 | 0.00000 | 0.0000 | 0.0000 | | | | 2 | 1 | 0.891 | -0.11541 | -0.11541 | 1.0000 | | | | 3 | 3 | 0.708 | -0.34531 | -1.0359 | 9.0000 | | | | 4 | 5 | 0.562 | -0.57625 | -2.8813 | 25.000 | | | | 5 | 7 | 0.447 | -0.80520 | -5.6364 | 49.000 | | | | 6 | 9 | 0.355 | -1.0356 | -9.3207 | 81.000 | | | | | | | | | | | | | Σ | 25.000 | | -2.8778 | -18.990 | 165.00 | | | With $$n = 6$$ $$\sum_{i=0}^{6} t_i = 25.000$$ $$\sum_{i=0}^{6} z_{i} = -2.8778$$ $$\sum_{i=1}^{6} t_i z_i = -18.990$$ $$\sum_{i=1}^{6} t_i^2 = 165.00$$ 36 # Example 3-Transformation of Data cont. Calculating a_0, a_1 $$a_1 = \frac{6(-18.990) - (25)(-2.8778)}{6(165.00) - (25)^2} = -0.11505$$ $$a_0 = \frac{-2.8778}{6} - (-0.11505)\frac{25}{6} = -2.6150 \times 10^{-4}$$ Since $$a_0 = \ln(A)$$ $$A=e^{a_0}$$ $$=e^{-2.6150\times10^{-4}}=0.99974$$ also $$\lambda = a_1 = -0.11505$$ http://numericalmethods.eng.usf.edu # Example 3-Transformation of Data cont. Resulting model is $\gamma = 0.99974 \times e^{-0.11505 t}$ **Figure.** Relative intensity of radiation as a function of temperature using Transformation of data model. #### **Example 3-Transformation of Data** cont. The regression formula is then $$\gamma = 0.99974 \times e^{-0.11505 t}$$ b) Half life of Technetium 99 is when $$\gamma = \frac{1}{2}\gamma\Big|_{t=0}$$ $0.99974 \times e^{-0.11505 t} = \frac{1}{2}(0.99974)e^{-0.11505(0)}$ $$e^{-0.11508 t} = 0.5$$ $$-0.11505 t = \ln(0.5)$$ $t = 6.0248 \ hours$ #### **Example 3-Transformation of Data** cont. c) The relative intensity of radiation after 24 hours is then $$\gamma = 0.99974e^{-0.11505(24)}$$ $$=0.063200$$ = 0.063200 This implies that only $\frac{6.3200 \times 10^{-2}}{0.99983} \times 100 = 6.3216\%$ of the radioactive material is left after 24 hours. #### Comparison Comparison of exponential model with and without data Transformation: **Table.** Comparison for exponential model with and without data Transformation. | | With data
Transformation
(Example 3) | Without data
Transformation
(Example 1) | | |----------------------------------|--|---|--| | A | 0.99974 | 0.99983 | | | λ | -0.11505 | -0.11508 | | | Half-Life (hrs) | 6.0248 | 6.0232 | | | Relative intensity after 24 hrs. | 6.3200×10 ⁻² | 6.3160×10 ⁻² | | 41 http://numericalmethods.eng.usf.edu #### **Additional Resources** For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit $\frac{http://numericalmethods.eng.usf.edu/topics/nonlinear_r}{egression.html}$ # THE END