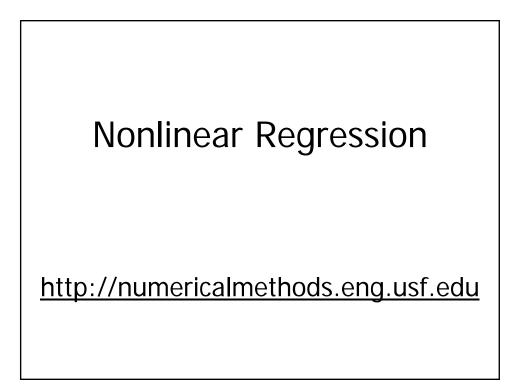
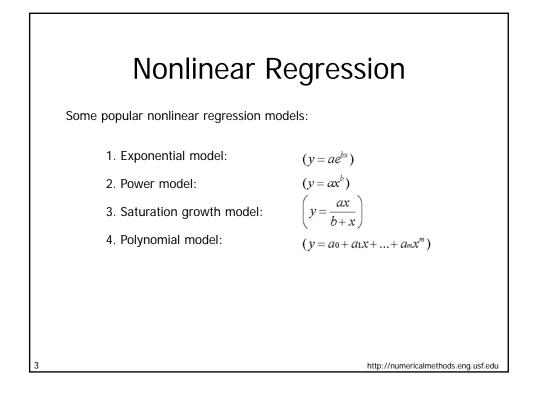
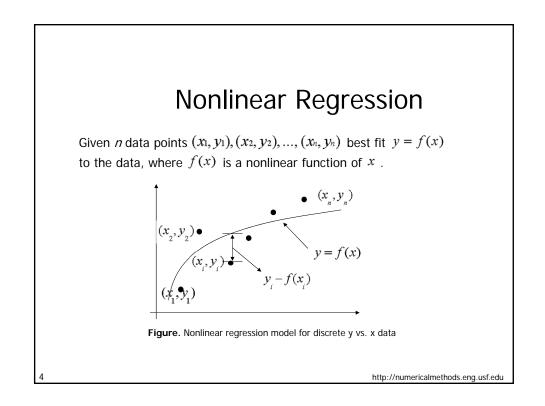
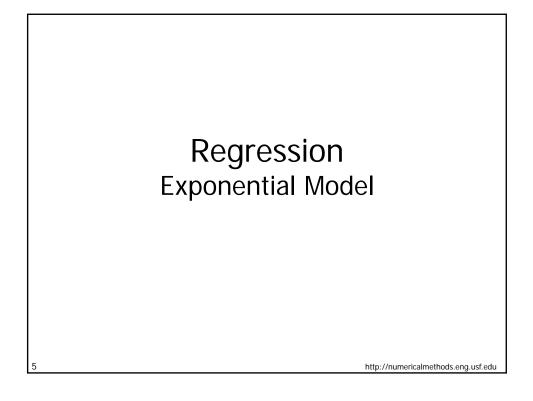
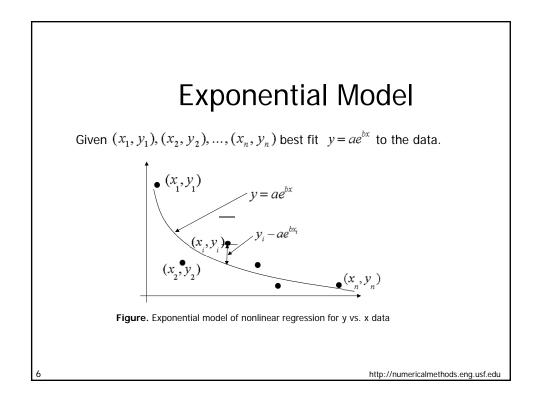
Nonlinear Regression	
Major: All Engineering Majors	
Authors: Autar Kaw, Luke Snyder	
http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates	
10/19/2016 http://numericalmethods.eng.usf.edu 1	

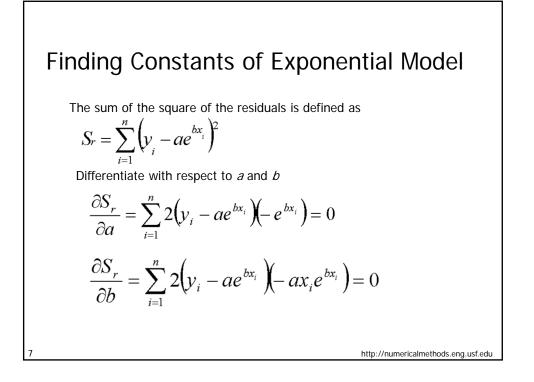


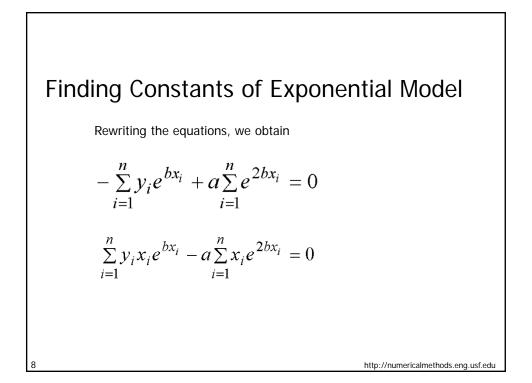




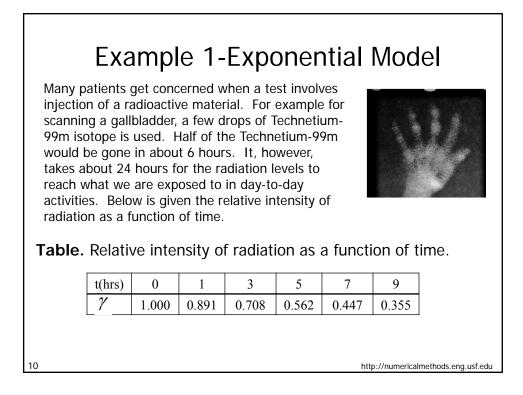


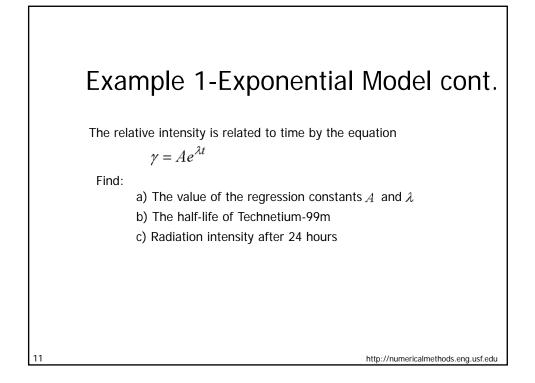


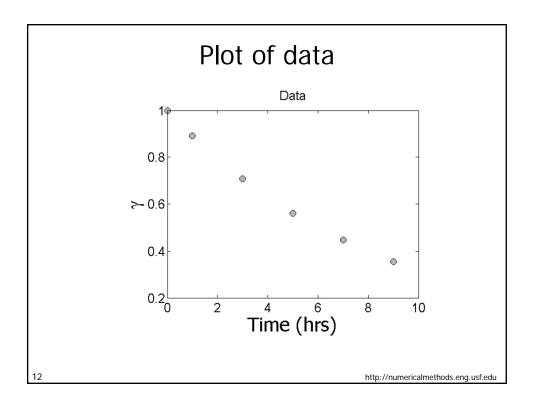


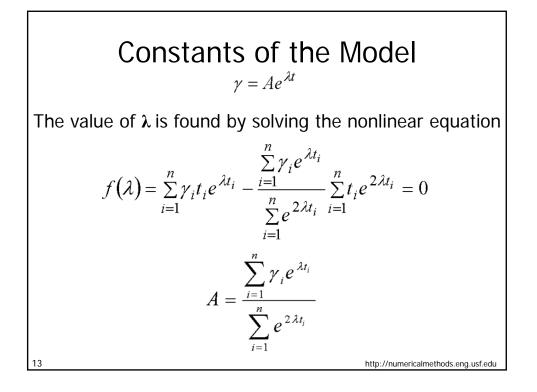


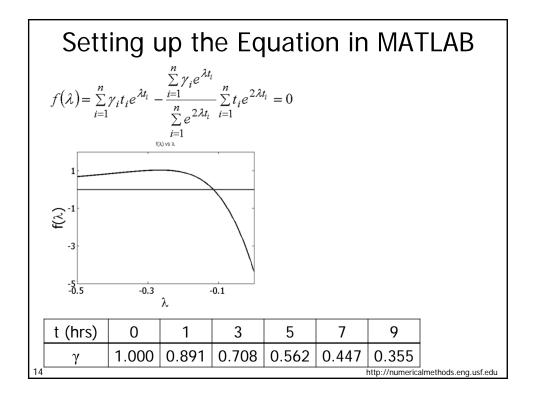
Finding constants of Exponential Model Solving the first equation for *a* yields $a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}}$ Substituting a back into the previous equation $\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$ The constant *b* can be found through numerical methods such as bisection method.

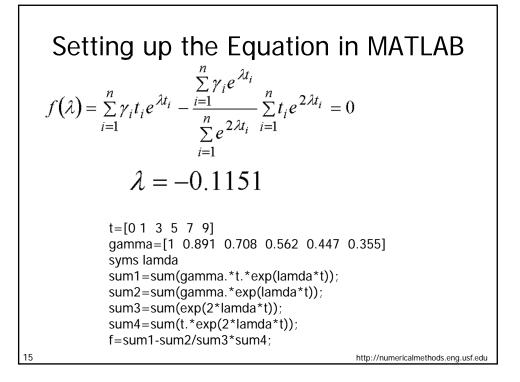


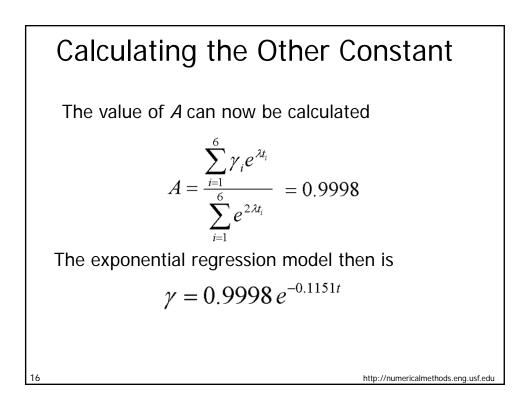


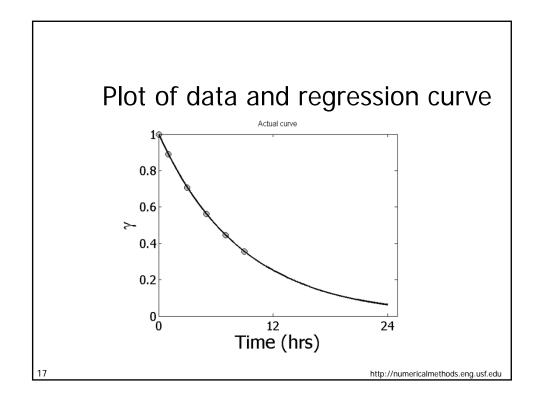


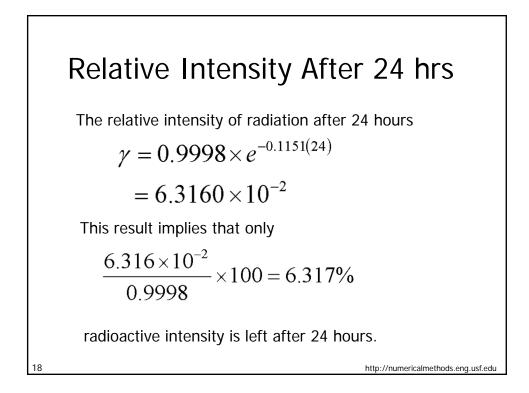


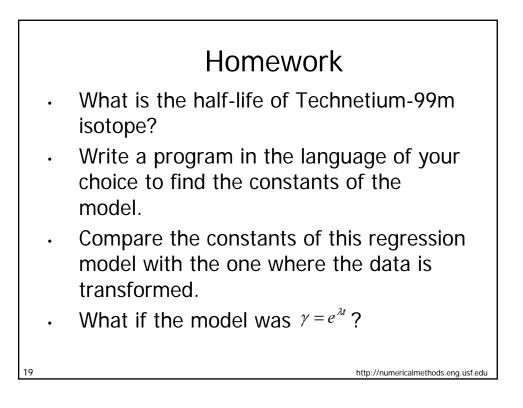


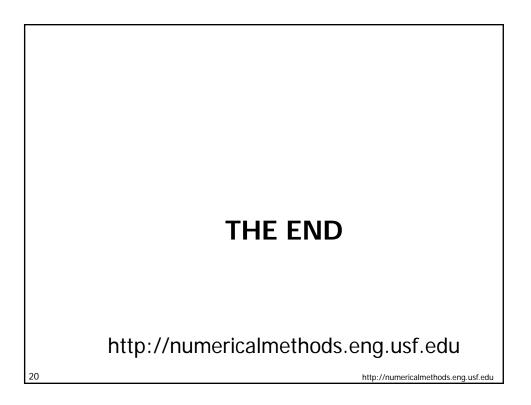




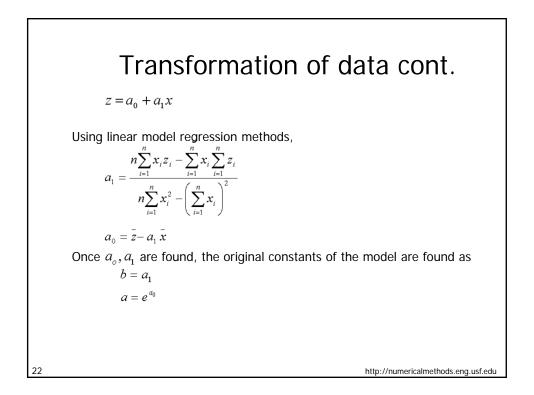


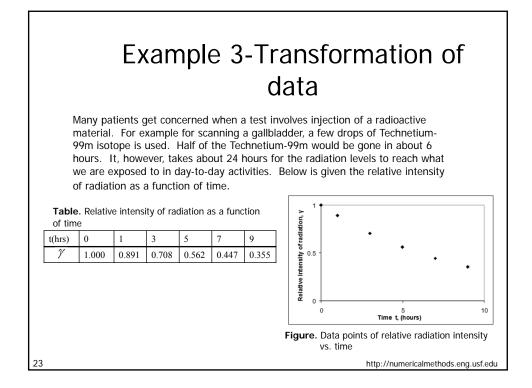


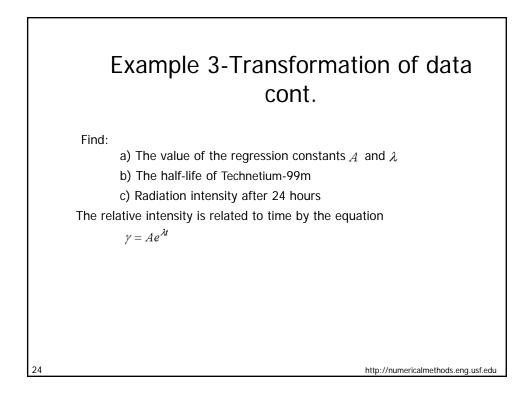












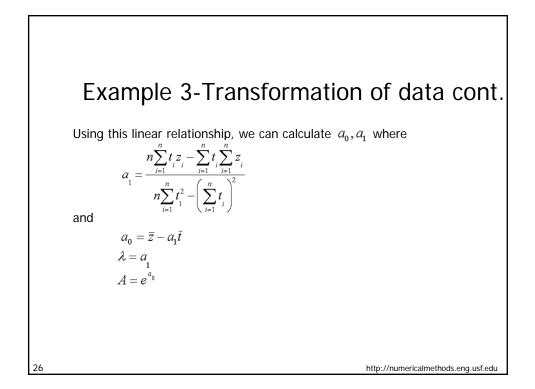
Example 3-Transformation of data cont.

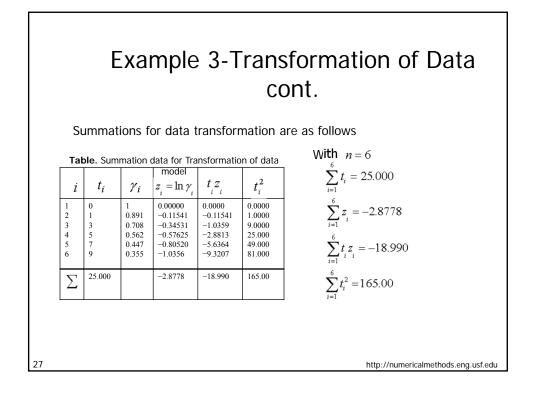
Exponential model given as,

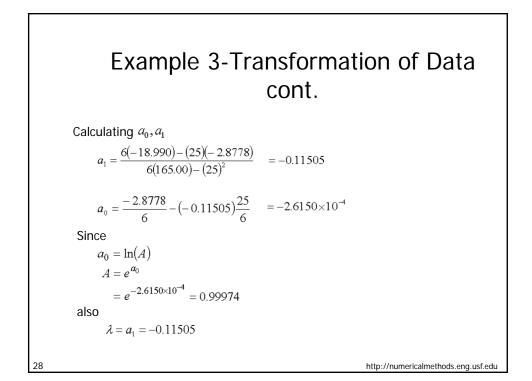
 $\gamma = Ae^{\lambda t}$ $\ln(\gamma) = \ln(A) + \lambda t$ Assuming $z = \ln \gamma$, $a_o = \ln(A)$ and $a_1 = \lambda$ we obtain $z = a_0 + a_1 t$ This is a linear relationship between z and t

25

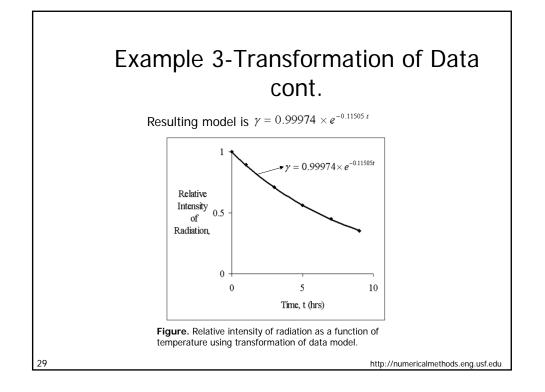
http://numericalmethods.eng.usf.edu

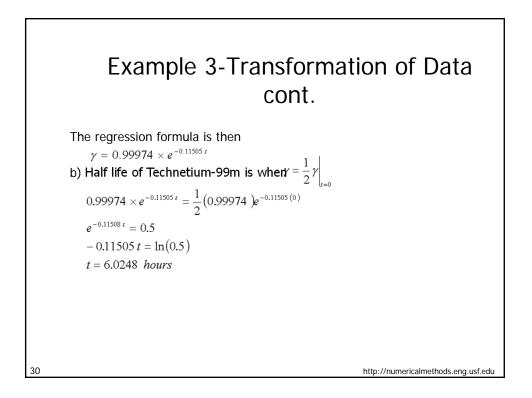


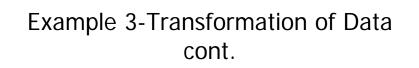




http://numericalmethods.eng.usf.edu







c) The relative intensity of radiation after 24 hours is then $\begin{array}{l} \gamma = 0.99974e^{-0.11505(24)} \\ = 0.063200 \end{array}$ This implies that only $\begin{array}{l} \underline{6.3200 \times 10^{-2}} \\ 0.99983 \end{array} \times 100 = 6.3216\%$ of the radioactive material is left after 24 hours.

31

http://numericalmethods.eng.usf.edu

