

Example 1-Exponential Model

Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the Technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time.

Table. Relative intensity of radiation as a function of time.

t(hrs)	0	1	3	5	7	9
γ	1.000	0.891	0.708	0.562	0.447	0.355

http://numericalmethods.eng.usf.edu

Setting up the Equation in MATLAB $f(\lambda) = \sum_{i=1}^{n} \gamma_i t_i e^{\lambda t_i} - \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}} \sum_{i=1}^{n} t_i e^{2\lambda t_i} = 0$ $\lambda = -0.1151$ $t = [0 \ 1 \ 3 \ 5 \ 7 \ 9]$ $gamma = [1 \ 0.891 \ 0.708 \ 0.562 \ 0.447 \ 0.355]$ syms lamda sum 1 = sum(gamma.*t.*exp(lamda*t)); sum 2 = sum(gamma.*exp(lamda*t)); sum 3 = sum(exp(2*lamda*t)); sum 4 = sum(t.*exp(2*lamda*t)); sum 4 = sum(t.*exp(tamta*t)); $sum 4 = sum(tamta*t) = t_{tamta*t} + t_{tamta*t$

