

Is LU Decomposition better than
Gaussian Elimination?Gaussian Elimination?<math>Solve [A][X] = [B]T = clock cycle time and nxn = size of the matrixForward EliminationDecomposition to LU $CT |_{FE} = T \left(\frac{8n^3}{3} + 8n^2 - \frac{32n}{3} \right)$ $CT |_{DE} = T \left(\frac{8n^3}{3} + 4n^2 - \frac{20n}{3} \right)$ Back Substitution
 $CT |_{BS} = T (4n^2 + 12n)$ Forward Substitution
 $CT |_{FS} = T (4n^2 - 4n)$ Back Substitution
 $CT |_{BS} = T (4n^2 + 12n)$ Hack Substitution
 $CT |_{BS} = T (4n^2 + 12n)$

Is LU Decomposition better than Gaussian Elimination?

To solve [A][X] = [B]

Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$	$T\left(\frac{8n^3}{3}+12n^2+\frac{4n}{3}\right)$

T = clock cycle time and nxn = size of the matrix

So both methods are equally efficient.

http://numericalmethods.eng.usf.edu

1

Example: Inverse of a Matrix
Find the inverse of a square matrix [A]
$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$
Using the decomposition procedure, the $[L]$ and $[U]$ matrices are found to be
$[A] = [L][U] = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$
http://numericalmethods.eng.usf.edu

Example: Inverse of a Matrix Solving [U][X] = [Z] for [X] $\begin{bmatrix}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{bmatrix}
\begin{bmatrix}
b_{11} \\
b_{21} \\
b_{31} \\
\end{bmatrix} = \begin{bmatrix}
1 \\
-2.56 \\
3.2
\end{bmatrix}$ $25b_{11} + 5b_{21} + b_{31} = 1$ $-4.8b_{21} - 1.56b_{31} = -2.56$ $0.7b_{31} = 3.2$

				L J	
ime taken by Gaussia	an Elimination	Time	taken b	y LU Deco	ompositio
$T\left(\frac{8n^4}{12n^3}\right)$	$4n^2$		$T\left(\frac{32n^2}{2}\right)$	$+12n^2$	$\frac{20n}{2}$
$I\left(\frac{3}{3}+12n\right) + Table 1 Comparing con$	$\overline{3}$	of finding	(3	of a matrix	using
$I\left(\frac{1}{3} + 12n + \frac{1}{3}\right)$ Table 1 Comparing con LU decomposition and	nputational times c Gaussian eliminati	of finding on.	inverse o	of a matrix	using