LU Decomposition

Major: All Engineering Majors

Authors: Autar Kaw

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Time Taken by Back Substitution

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & 0 & a''_{33} & \cdots & a''_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{i}^{(i-1)}}$$
 for $i = n-1,...,1$

Back Substitution

$$CT\mid_{BS} = T(4n^2 + 12n)$$

Is LU Decomposition better than Gaussian Elimination?

Solve
$$[A][X] = [B]$$

T = clock cycle time and nxn = size of the matrix

Forward Elimination

$$CT|_{FE} = T\left(\frac{8n^3}{3} + 8n^2 - \frac{32n}{3}\right)$$

Back Substitution

$$CT\mid_{BS} = T(4n^2 + 12n)$$

Decomposition to LU

$$CT \mid_{DE} = T \left(\frac{8n^3}{3} + 4n^2 - \frac{20n}{3} \right)$$

Forward Substitution

$$CT\mid_{FS} = T(4n^2 - 4n)$$

Back Substitution

$$CT\mid_{BS} = T(4n^2 + 12n)$$

Is LU Decomposition better than Gaussian Elimination?

To solve
$$[A][X] = [B]$$

Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$	$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$

T = clock cycle time and nxn = size of the matrix

So both methods are equally efficient.

Truss Problem

10	0.7071	0	0	-1	-0.8660	0	0	0	0 -	1	г 0 ¬
0	0.7071	0	1	0	0.5	0	0	. 0	0		-1000
	0	1	0	0	0	-1	0	0	0		0
	0	0	-1	0	0	0	0	0	0		0
	0	0	0	0	0	0	1	0	0.7071	F =	500
	0	0	0	1	0	0	0	0	-0.7071		0
	0	0	0	0	0.8660	1	0	-1	0		0
	0	0	0	0	-0.5	0	-1	0	0		-500
L	0	0	0	0	0	0	0	1	0.7071		

http://nm.mathforcollege.com

♦ 200#

Finding the inverse of a square matrix

The inverse [B] of a square matrix [A] is defined as

$$[A][B] = [I]$$
 OR $[B][A] = [I]$

Finding the inverse of a square matrix

How can LU Decomposition be used to find the inverse?

$$[A][B] = [I]$$

First column of [*B*]

Second column of [B]

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{n2} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{n2} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

The remaining columns in [B] can be found in the same manner

Find the inverse of a square matrix [A]

$$[A] = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

Using the decomposition procedure, the [L] and [U] matrices are found to be

$$[A] = [L][U] = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Solving for the each column of [B] requires two steps

- 1) Solve [L][Z] = [C] for [Z]
- 2) Solve [U][X] = [Z] for [X]

Step 1:
$$[L][Z] = [C] \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

This generates the equations:

$$z_1 = 1$$

$$2.56z_1 + z_2 = 0$$

$$5.76z_1 + 3.5z_2 + z_3 = 0$$

Solving for [Z]

$$z_{1} = 1$$

$$z_{2} = 0 - 2.56z_{1}$$

$$= 0 - 2.56(1)$$

$$= -2.56$$

$$z_{3} = 0 - 5.76z_{1} - 3.5z_{2}$$

$$= 0 - 5.76(1) - 3.5(-2.56)$$

$$= 3.2$$

$$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix}$$

Solving
$$[U][X] = [Z]$$
 for $[X]$

Solving [*U*][X] = [Z] for [X]
$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix}$$

$$25b_{11} + 5b_{21} + b_{31} = 1$$
$$-4.8b_{21} - 1.56b_{31} = -2.56$$
$$0.7b_{31} = 3.2$$

Using Backward Substitution

$$b_{31} = \frac{3.2}{0.7} = 4.571$$

$$b_{21} = \frac{-2.56 + 1.560b_{31}}{-4.8}$$

$$= \frac{-2.56 + 1.560(4.571)}{-4.8} = -0.9524$$

$$b_{11} = \frac{1 - 5b_{21} - b_{31}}{25}$$

$$= \frac{1 - 5(-0.9524) - 4.571}{25} = 0.04762$$

So the first column of the inverse of [A] is:

$$\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = \begin{bmatrix} 0.04762 \\ -0.9524 \\ 4.571 \end{bmatrix}$$

Repeating for the second and third columns of the inverse

Second Column

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} = \begin{bmatrix} -0.08333 \\ 1.417 \\ -5.000 \end{bmatrix}$$

Third Column

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} b_{13} \\ b_{23} \\ b_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} b_{13} \\ b_{23} \\ b_{33} \end{bmatrix} = \begin{bmatrix} 0.03571 \\ -0.4643 \\ 1.429 \end{bmatrix}$$

The inverse of [A] is

$$[A]^{-1} = \begin{bmatrix} 0.04762 & -0.08333 & 0.03571 \\ -0.9524 & 1.417 & -0.4643 \\ 4.571 & -5.000 & 1.429 \end{bmatrix}$$

To check your work do the following operation

$$[A][A]^{-1} = [I] = [A]^{-1}[A]$$

To find inverse of [A]

<u>Time taken by Gaussian Elimination</u>

$$= n(CT|_{FE} + CT|_{BS})$$

$$= T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

Time taken by LU Decomposition

$$= CT \mid_{DE} + n \times CT \mid_{FS} + n \times CT \mid_{BS}$$
$$= T \left(\frac{32n^3}{3} + 12n^2 - \frac{20n}{3} \right)$$

To find inverse of [A]

<u>Time taken by Gaussian Elimination</u>

$$T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

Time taken by LU Decomposition

$$T\left(\frac{32n^3}{3}+12n^2-\frac{20n}{3}\right)$$

Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition and Gaussian elimination.

n	10	100	1000	10000
CT _{inverse GE} / CT _{inverse LU}	3.288	25.84	250.8	2501

For large
$$n$$
, $CT|_{inverse\ GE} / CT|_{inverse\ LU} \approx n/4$