Is LU Decomposition better than Gaussian Elimination? Solve [A][X] = [B]

T = clock cycle time and nxn = size of the matrix

Forward Elimination

$$CT|_{FE} = T\left(\frac{8n^3}{3} + 8n^2 - \frac{32n}{3}\right)$$

Back Substitution

 $CT\mid_{BS} = T\left(4n^2 + 12n\right)$

Decomposition to LU

$$CT|_{DE} = T\left(\frac{8n^3}{3} + 4n^2 - \frac{20n}{3}\right)$$

Forward Substitution $CT \mid_{FS} = T(4n^2 - 4n)$

Back Substitution $CT \mid_{BS} = T(4n^2 + 12n)$

http://numericalmethods.eng.usf.edu

Is LU Decomposition better than Gaussian Elimination?

To solve [A][X] = [B]

Time taken by methods

T = clock cycle time and nxn = size of the matrix

So both methods are equally efficient.

To find inverse of [A]

Time taken by Gaussian Elimination

$$= n\left(CT \mid_{FE} + CT \mid_{BS}\right)$$
$$= T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

Time taken by LU Decomposition

$$= CT \mid_{DE} +n \times CT \mid_{FS} +n \times CT \mid_{BS}$$
$$= T \left(\frac{32n^3}{3} + 12n^2 - \frac{20n}{3} \right)$$

http://numericalmethods.eng.usf.edu

To find inverse of [A]

Time taken by Gaussian EliminationTime taken by LU Decomposition $T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$ $T\left(\frac{32n^3}{3} + 12n^2 - \frac{20n}{3}\right)$

Table 1 Comparing computational times of finding inverse of a matrix usingLU decomposition and Gaussian elimination.

n	10	100	1000	10000
$ CT _{inverse GE} / CT _{inverse LU}$	3.288	25.84	250.8	2501

For large *n*,
$$CT|_{inverse GE} / CT|_{inverse LU} \approx n/4$$

http://numericalmethods.eng.usf.edu