Is LU Decomposition better than Gaussian Elimination?

Solve
$$[A][X] = [B]$$

T = clock cycle time and nxn = size of the matrix

Forward Elimination

$$CT \mid_{FE} = T \left(\frac{8n^3}{3} + 8n^2 - \frac{32n}{3} \right)$$

Back Substitution

$$CT\mid_{BS} = T(4n^2 + 12n)$$

LU Decomposition

$$CT \mid_{DE} = T \left(\frac{8n^3}{3} + 4n^2 - \frac{20n}{3} \right)$$

Forward Substitution

$$CT\mid_{FS} = T(4n^2 - 4n)$$

Back Substitution

$$CT\mid_{BS} = T(4n^2 + 12n)$$

Is LU Decomposition better than Gaussian Elimination?

To solve
$$[A][X] = [B]$$

Time taken by methods

Gaussian Elimination	LU Decomposition		
$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$	$T\left(\frac{8n^3}{3} + 12n^2 + \frac{4n}{3}\right)$		

T = clock cycle time and nxn = size of the matrix

So both methods are equally efficient.

To find inverse of [A]

<u>Time taken by Gaussian Elimination</u>

$$= n(CT|_{FE} + CT|_{BS})$$

$$= T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

Time taken by LU Decomposition

$$= CT |_{LU} + n \times CT |_{FS} + n \times CT |_{BS}$$

$$= T \left(\frac{32n^3}{3} + 12n^2 + \frac{20n}{3} \right)$$

To find inverse of [A]

Time taken by Gaussian Elimination

$$T\left(\frac{8n^4}{3} + 12n^3 + \frac{4n^2}{3}\right)$$

Time taken by LU Decomposition

$$T\left(\frac{32n^3}{3} + 12n^2 + \frac{20n}{3}\right)$$

Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition and Gaussian elimination.

n	10	100	1000	10000
CT _{inverse GE} / CT _{inverse LU}	3.28	25.83	250.8	2501