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Abstract: Dynamic polarization measurements of embedded reinforcing steel can be used to estimate 
corrosion rate in ageing structures. Potential in such tests is commonly measured using a conventional 
reference electrode but this can yield unstable readings, particularly on aged concrete with high near-
surface resistivity.  Interaction between the concrete and the electrode introduces time-dependent 
liquid junction potentials requiring waiting for stabilization.   The Kelvin Probe (KP) uses a vibrating-
plate capacitor principle to measure potential without contacting the concrete surface thus avoiding 
complications of electrolyte interaction. This paper extends application of a previously introduced KP-
based system to include dynamic Electrochemical Impedance Spectroscopy (EIS) measurements of 
steel in concrete. 
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1 Introduction 
Corrosion rate evaluation of reinforcing steel in concrete structures is often conducted by means 
of steel polarization measurements. A small current density is impressed on the steel-concrete 
interface and the resulting small (e.g. 10 mV) potential change is measured either in the time 
domain or in the frequency domain, as in the case of electrochemical impedance spectroscopy 
(EIS) where impressed alternating currents over a range of frequencies range are used. 

In the simplest cases the corrosion rate is found to be proportional to the inverse of the 
polarization resistance which corresponds with the low-frequency limit of the ratio of the 
potential change to the impressed current density with appropriate correction for ohmic 
components.  In more complicated cases the measurements require more sophisticated analysis. 
In both cases, obtaining accurate results requires that the potential, which is measured by means 
of a reference electrode normally placed on the concrete external surface, is stable in time 
despite any inherent instability of the reference electrode or changes occurring on the concrete 
surface during the test. An important source of potential drift stems from the nature of 
conventional reference electrodes (e.g. Copper/Copper Sulfate electrode), which require 
electrolytic contact between the internal electrode medium and the pore water near the surface 
of the concrete. The required contact normally involves a porous tip at the bottom of the 
electrode body and some intermediate moist body such as a small sponge in contact with the 
concrete surface. In most cases and especially in the case of dry or aged concrete surfaces, the 
contact with the sponge results in relatively large electrolyte intrusion to the initially nearly 
empty surface pore network. The intrusion results in the development of slowly evolving 
diffusional potential differences across the depth of the near-surface region. The consequent 
drift in the potential reading can be large (e.g. 200 mV) and continue over a long time (e.g. 
hours) thus delaying the start, or otherwise compromising the validity, of the corrosion rate 
derived from polarization measurements. 

The Kelvin Probe (KP) uses a vibrating-plate capacitor principle to measure potential without 
contacting the concrete surface thus avoiding complications of electrolyte interaction. The 
principle of operation of the KP is well documented in the literature [1-4] so only a brief review 
is presented here. The KP embodiment in these experiments used a 13 mm diameter austenitic 
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stainless steel (Type AISI 302) disk placed ~ 1mm over the concrete surface and made to vibrate 
perpendicular to the concrete surface at ~150 Hz with ~ 0.5 mm amplitude. An electromagnetic 
voice coil was used as a driver. The disk is connected through a current-sensing electronic 
circuit and a variable voltage source to the reinforcing steel that is embedded in the concrete 
directly beneath the disk. The natural Volta potential difference between the disk and the 
surface of the concrete, which together form a parallel-plate capacitor, results in a capacitive 
charge directly proportional to the value of the potential difference (nominally constant due to 
the interconnection) and the disk-concrete capacitance. Since the capacitance varies with the 
oscillating gap distance, the charge likewise varies resulting in an alternating current through 
the disk-steel interconnecting circuit.  An automatic zeroing circuit changes the value of the 
voltage source until the current vanishes. The value of the source voltage at that point is equal 
but opposite to the natural steel-disk potential difference. That value is then recorded as the 
probe potential reading for that position on the surface of the concrete.  

Since the disk doesn’t contact the concrete and because its material properties are not subject 
to change, KP readings obtained by moving the disk over different parts of the concrete surface 
effectively constitute a survey of the potential gradients over the concrete surface. That 
information can be used to identify corroding regions of reinforcement within a concrete body, 
in the manner of the ASTM C-876 [5] potential mapping procedure but without disturbing the 
concrete surface.  

The authors have recently demonstrated the feasibility of using a novel customized KP as an 
alternative to a conventional electrode for potential mapping [6].  They also demonstrated the 
use of the probe for nearly non-intrusive polarization resistance measurements in the time 
domain that may serve for corrosion rate determination [7].  In this paper, recent advances are 
presented expanding the use of the KP to include frequency domain polarization measurements 
of steel in concrete, in the form of Electrochemical Impedance Spectroscopy (EIS) tests. This type 
of measurement can provide more accurate evaluation of polarization parameters with greater 
sensitivity, while avoiding any disturbance of the concrete surface at the location of 
measurement.   

2 Materials and Methods 

2.1 Kelvin Probe Embodiment for Polarization Measurements of Steel in Concrete 
For steel polarization measurements the KP disk was placed at a single location on the concrete 
surface, with a relatively large (10 x 10 cm square with a 3 cm diameter hole in the centre) 
external counter electrode (CE) surrounding the sensing disk but not touching it.  The CE and 
disk were separated by a grounded shield (Figure 1). The CE was made of a conductive 
elastomer (resistivity in the order of 1 ohm-cm) that does not moisten the concrete surface thus 
minimizing disturbance to the concrete footprint of the counter electrode and surroundings 
(including the place beneath the sensing disk) and was pressed against the concrete surface with 
a clamped steel plate. A polarizing current was introduced between the CE and the embedded 
steel, resulting in a change of the steel-concrete interfacial potential plus an ohmic potential 
drop due to the electric resistance of the intervening concrete between the surface of the 
concrete and that of the steel. Given the relatively large size of the counter electrode, the current 
flow toward the steel was nearly uniform and the KP sensed the combined ohmic and interfacial 
polarization response to the applied current. The values of the current and the combined 
potential change were recorded and the results were then, after making appropriate working 
assumptions of the effective steel area and other system parameters, processed to obtain a 
nominal polarization resistance and subsequently a nominal corrosion rate for the underlying 
steel. Calibration of the KP against a conventional electrode is unnecessary since only changes in 
potential matter.  The feasibility of this approach was recently demonstrated by the authors for 
direct current galvanostatic pulse polarization resistance measurements in laboratory 
reinforced concrete specimens [7].  
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Figure 1 Schematic diagram of combined KP reference (R) plus dry counter electrode (CE) system with the 
reinforcing steel bar (rebar) as the working electrode (W); red arrows show idealized excitation current path. 

Patent Pending 

 

2.2  Electrochemical Impedance Spectroscopy  
The extension to alternating current operation for EIS measurements, introduced in this 

paper, was implemented by connecting the system to the C, R, and W terminals of a Gamry 600 
potentiostat and impedance analyzer unit. Because the vibrating disk operated at near 150 Hz 
and the electronic processing unit had typical settling times in the order of ½ second, EIS 
measurements were conducted only at frequencies <~1 Hz.  That constraint does not represent 
a severe limitation because much of the EIS corrosion rate information for steel in concrete is 
present at the lower frequencies of the spectrum [8].  The low frequency limit was typically 
0.001 Hz.  The tests were normally conducted in galvanostatic mode since in that mode the 
default settings of the impedance analyser resulted in stable operation. That choice is not 
limiting as potentiostatic operation should be equally feasible with adequate potentiostat 
response time settings.  For comparison purposes, EIS measurements were made also using a 
conventional reference electrode and the same counter electrode at each measurement location.  
These tests involved placing the tip of a Saturated Calomel Electrode (SCE) on top of a small 
(~13x13 mm) lightly moistened sponge in contact with the concrete surface. 

The reinforced concrete specimens were duplicate beams 5 cm thick, 15 cm wide and 70 cm 
long, and designated A and B.  Each beam had a longitudinally centered #3 (10 mm diameter) 
plain steel ASTM A-615 reinforcing steel bar with dark mill scale. The central 50 mm of each 
beam contained 8.4 kg/m3 Cl- ion (2.5 wt% of the cement content, exceeding typical corrosion 
initiation threshold levels [9]) admixed by adding the corresponding proportion of  NaCl.  
Concrete cover on top of the steel was 2 cm.  The beams had been cast ~ 3 years before the tests 
described here and were normally kept in a moist condition.  Before conducting the tests the 
beam surfaces were allowed to dry at least overnight in laboratory air. All tests were conducted 
at temperatures around 22 oC.  EIS measurements were conducted on each beam with the 
electrodes placed on top of the steel bar on the central, chloride contaminated region (x = 0 cm) 
where the steel surface was in the actively corroding condition, and at a location 20 cm away (x 
= 20 cm) from the center where the steel surface was in the passive condition.  

 

3 Results and Discussion 
The steel open circuit potential values were determined using an SCE placed on the concrete 
surface, as well as by the KP at the same locations (Table 1, average of representative values 
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during the period of testing). The SCE potentials were comparable in the replicate beams and 
consistent with the excepted active and passive character of each position [7]. 

 
 

Table 1 Baseline steel potential readings (mV) 
          
  Beam A Beam B 

  

Active 
(x=0 cm) 

Passive       
(x = 20 cm) 

Active 
(x=0 cm) 

Passive       
(x = 20 cm) 

Open Circuit Potential, KP [mV] -425 -227 -334 -175 
Open Circuit Potential, SCE [mV] -365 -169 -298 -163 

 
 

The potentials recorded by the KP, although offset as expected from the SCE values by an 
approximately constant amount that depends on the disk material and its surface condition, 
showed essentially the same active/passive differentiation as those obtained from the SCE, 
confirming earlier work that demonstrated the feasibility of concrete potential mapping with the 
KP [6]. 

Figure 2 shows examples of EIS spectra obtained with the KP used as a reference electrode at 
the active and passive locations of one of the beams, together with results obtained using the 
conventional SCE electrode. Functioning as a reference electrode, the KP successfully followed 
the programmed EIS excitation over the entire frequency range. Results were comparable and 
reproducible in the replicate beam and in replicate tests. The results for the KP approached 
closely the overall form of those obtained with the conventional electrode (the small relative 
resistive offset between the KP and SCE results for x=0 cm may be ascribed to minor differences 
in placement and would not have a significant effect in corrosion rate estimations). Both sets of 
results show dramatic differentiation between the active and passive regions.  

For quantitative comparison, the results for x=20 cm,  which show a well-defined low 
frequency loop, were fit to a those of an equivalent circuit consisting of a solution resistance Rs 
in series with the parallel combination of a non-ideal interfacial capacitance (Constant Phase 
Element, CPE [10]) and a polarization resistance Rp.  For x=0, the EIS spectrum was not 
amenable to straightforward interpretation but was indicative of much lower low frequency 
polarizability (and hence correspondingly greater corrosion rate) than that at x=20. Analysis 
was thus limited to assigning a nominal solution resistance Rs* to the real part of the impedance 
at 1 Hz, and a nominal polarization resistance Rp* to the modulus of the difference of 
impedances at 1mHz and 1 Hz.   

Comparison of the results of the analysis using the KP and the SCE is shown in Figure 3 for all 
of the resistive elements. The figure shows overall good agreement, spanning more than one 
order of magnitude, of the KP results and those of the conventional electrode. The agreement is 
in the order of, or better than, the usual uncertainty in converting electrochemical corrosion rate 
determinations to actual metal loss [11]. There was also good agreement in the values of the CPE 
parameters [10]. The average values for Yo and n were 5,3 S sn and 4,3 S sn , and 0,69 and 0,67 
for the KP and SCE x=20 cm measurements respectively. 
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Figure 2 Examples (Beam A) of Nyquist representation of EIS spectra observed at the x=20cm (top) and x=0 cm 
locations with the KP and with a conventional SCE electrode; lowest and highest frequencies were 1 mHz and 1 

Hz respectively (3 points per decade) 
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Figure 3 Comparison of Rs (triangles) and Rp (circles) values obtained in repeat tests at  the x=20cm (large 
symbols) and x=0 cm (small symbol) locations with the KP and with a conventional SCE electrode, showing 

overall agreement between results; red: beam A, blue: beam B; The dashed line represents theoretical 1:1 
correlation 
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Since the counter electrode did not include a guard ring [12] the sampled area of steel was 

uncertain and thus the impedance parameters are not reported in surface area-normalized form. 
Nevertheless, assuming an approximate Stearn-Geary parameter of 26 mV [11], and for 
simplicity that the steel area sampled is roughly that beneath the counter electrode footprint (~ 
30 cm2), the Rp values for the x=0 cm and x=20 cm locations indicate nominal corrosion current 
densities in the order of 10 µA/cm2 and 0.4 µA/cm2 respectively, which are in the order of 
values expected for actively corroding and nearly passive steel behaviour. 

The absence of a guard ring does not in any way represent a fundamental limitation of KP 
implementation and the incorporation of an integrated guard ring represents an opportunity for 
future development.  Any negative consequences associated with the uncertainty of the actual 
area of the sampled region in the experiments described in this paper would apply equally to 
both the SCE and KP.   

The KP’s use as an EIS reference electrode shows promise as a means by which fast, 
automated field corrosion data acquisition can be facilitated in cases where the use of a 
conventional wet-tip electrode would be disruptive or time-consuming. 

 
 

4 Conclusions 
 

• The innovative use of a Kelvin probe as a contactless reference electrode in the 
measurement of EIS spectral data for reinforcing steel in concrete without contacting the 
concrete surface, and fitted with a novel counter electrode arrangement was successfully 
demonstrated. 

• The results were in good agreement with EIS spectral data measured with a conventional 
reference electrode, successfully identifying and characterizing a high corrosion rate 
location.  
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