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ABSTRACT
 
Recent corrosion related failures of grouted post tensioned tendons, even after the introduction of 
improved grouts, have led to renewed interest in supplemental or backup means of corrosion control for 
these systems.  A finite element model is presented to explore feasibility of impressed current 
protection of strand in grouted tendons. The model examines polarization evolution as function of 
service time and includes consideration of anode placement and size, grout porosity, pore water 
alkalinity, electrochemical species diffusivity and applied voltage on the polarization efficacy and 
durability of such a system. The exploratory model projections suggested that, within the context of the 
design parameters assumed, an impressed current cathodic protection system installed internally into a 
grouted duct for the purpose of cathodic protection of steel tensioning strand may be feasible for the 
case of initially passive steel. 
 
Key words: COMSOL Multiphysics, Impressed Current Cathodic Protection, Post-Tensioning Strands, 
FDOT 
 

INTRODUCTION 
 
Corrosion of steel in concrete and cementitious media is one major issue facing American 
infrastructure.1,2,3 High strength strand in bridge post tensioning (PT) tendons have recently 
experienced unexpected corrosion related failures even after the introduction of improved cementitious 
grouts intended to prevent voids and other corrosion-inducing deficiencies4.There is uncertainty as to 
the precise corrosion mechanism so alternative avenues of corrosion control are being explored with 
renewed interest, given the critical structural nature of PT components. Among those alternatives, 
including such techniques as cement mineral admixtures, alternative duct fills such as grease, and 
external polarization methods, Impressed Current Cathodic Protection (ICCP) is receiving attention as 
an approach meriting further consideration.  Conceptually, ICCP involves applying an external electrical 
current to the strands by way of an anode running parallel to the reinforcement inside the tendon duct, 
to polarize the steel in the cathodic direction, thus promoting the stability of the passive regime, or 
lowering the rate of corrosion had it already began.  Assuming that an anode wire could be introduced 
practically before grouting, and fitted with periodic insulation spacers to avoid short circuits with the 
strands, several electrochemical issues would need assessment to ascertain whether the system could 
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The model included a detailed representation of the metallic perimeter of a 7-wire strand, to assess to 
which extent steel polarization may reach into the receded line of contact between wires. The centrally 
located anode was ¼ in (0.0061 m) in diameter and was envisioned as being made of a mixed 
metal/metal oxide material of the type commonly used for CP of reinforcing steel. 

Assumptions and Ruling Equations 

The pore water of cementitious grout is a complex and highly alkaline solution4. For the purposes of our 
calculations we have assumed the concrete pores contain a solution of Ca2+, Na+, OH-, O2, and water, 
and that a substantial quantity of Ca(OH)2 is present in the hydrated cement matrix. The calcium 
hydroxide is assumed to rapidly achieve equilibrium with the pore water calcium and Hydroxide ions so 
the equilibrium reaction given in Eq. 1 applies 

ሻଶܪሺܱܽܥ ↔ ଶାܽܥ ൅  (1) ିܪ2ܱ

The model treats the reaction equilibrium between solid calcium hydroxide in concrete and the 
dissolved species in pore water based on kinetic theory as outlined in Peelen et al.7.  The grout is 
treated for simplicity as if it were a homogeneous medium with properties representative of the average 
composition and effective porosity and pore interconnectivity of the actual system. The Faradaic 
reactions assumed to apply to the major carrier of ionic current in the system is oxygen reduction, 
which proceeds via the reactions, 

at the cathodes, and at the anode. 

 

A tertiary current distribution8 has been simulated by introducing a current at the anode and cathodes 
as a function of an externally applied voltage, the potential differences across the electrochemical 
interfaces (polarizations) and the concentrations of the relevant species. Eq. 4 gives the inward current 
densityA (ic) at the cathodes and Eq. 5 gives the inward current density at the anodes (ia).  

 
݅ܽ ൌ

ܪܱ
ܪܱ݋ܥ

∗ ܽ݋݅ ∗ 10
ா௘௫௧௔ି௏ାா௢௔

஻௔  
(4) 

 
݅ܿ	 ൌ െ

ܱ
݋ܥ

∗ ܿ݋݅ ∗ 10
௏ିா௢௖
஻௖  

(5) 

where O is the concentration of oxygen, present as molecular O2 in the grout, in ݈݉݋/݈, OH is the 
concentration of hydroxide in		݈݉݋/݈, Co is the initial oxygen concentration in ݈݉݋/݈, and CoOH is the 
initial hydroxide concentration in 		݈݉݋/݈. V is the potential in the grout at a point immediately next to the 
electrode interfaceB in Volts. Eo, io, and B are electrochemical constants for the anode abstracted from 
Bartholemew et al. 3 by idealized Tafel extrapolation and for the cathodes from Dugarte et al.9, and Eexta 
is the potential applied externally by a notional rectifier to the system (potential of the metal in the 
anode minus that of the steel) in Volts. Parameter values are listed in Table 1. This system of equations 
treats the cathode as the ground and therefore the potential in the grout projected by the finite element 

                                                 
A That is, the conventional current density coming from the outside into the grout domain. At a net anodic interface that current 
density is of positive sign.  
B As measured by an SCE electrode with the tip placed on that point, and with the metallic contact connected to the positive 
terminal of an ideal voltmeter and the other terminal connected to the metal.  This convention is the opposite of that in typical 
half-cell potential measurements but is used here to match the potential definition scheme of the finite element computation 
package.  

 																										 	ଶܱܪ2						 ൅	ܱଶ ൅ 4݁ିെ൐ ିܪ4ܱ  (2)  

െ൐	ିܪ4ܱ																																														  ଶܱܪ2 ൅ ܱଶ ൅ 4݁ି  (3)  
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Table 1: Electrochemical Properties of Concrete and Model Inputs 

Parameter 
Illustrative range/value in  
comparable literature 

treatments
3,7,9,12-17

 
Chosen values* Description 

Porosity (assumed 
saturated) 1.0E-01 – 1.9E-01 

1.12E-01 Portion of the matrix that is pore space 

Density (kg/m3) 2.4E+03 2.4E+03 Nominal density  

D OH eff (m2/s) 1E-11 – 2E-10** 8E-11 - 4E-10*** Effective hydroxide diffusivity 

D Na eff (m2/s) 0.16E-12 – 1.33E-11 2.00E-12 Effective sodium diffusivity 

D K eff (m2/s) 0.24E-12 – 1.96E-11 5.00E-12 Effective potassium diffusivity 

D Ca eff (m2/s) 7.90E-12 7.90E-12 Effective calcium diffusivity 

D O eff (m2/s) 1E-08 – 3E-08 3.00E-08 Effective oxygen diffusivity 

Homogenized  Pore K 
(mol/m3) 8.0E+01 – 4.50E+02 

- 
Grout potassium concentration, model 
bundles Potassium and Sodium content 

Homogenized  Pore Na 
(mol/m3) 2.5E01 – 1E03 

3.55E+02 
Grout Sodium concentration, assumed 
primary counter ion to Hydroxide 

Homogenized  Pore OH 
(mol/m3) 1.05E+02 – 1.50E+03 3.55+02**** 

Effective hydroxide concentration given pH 
13.5 

Homogenized  Pore Ca 
(mol/m3) 1E+00 

1.40E-02 
Calcium concentration such that calcium is 
in kinetic equilibrium with hydroxide 

Homogenized  Solid 
Ca(OH)2 (mol/ m3) 3.5 E03 

3.5E03 Calcium hydroxide concentration in the bulk 

Homogenized  initial 
oxygen content  (mol/ m3) 0.3 

0.3 Nominal initial oxygen content 

ioa (A/m2) Linked to Eoa choice 2.00E-05 Nominal polarization parameter, anode
3
 

Eoa (V SCE) Linked to ioa choice 0 Nominal polarization parameter, anode
3
 

Ba  (V/Decade) 1.5E-01 – 5E-01 0.15 Nominal polarization parameter, anode
3
 

ioc (A/m2) Linked to Eoc choice 2.00E-05 Nominal polarization parameter, steel
9
 

Eoc (V SCE) Linked to Eoc choice 0 Nominal polarization parameter, steel
9
 

Bc  (V/Decade) 1.0E-01 – 4.0E-01 0.138 Nominal polarization parameter, steel
9
 

Ip (A/m2) 1E-4 1E-4 Passive anodic current at steel 

* Species contents for these exploratory calculations are representative of comparable simulations for concrete. 
7
 Values for 

grout may vary, including greater Ca(OH)2 content than the effectively conservative choice used here.  

** For Portland cement, dependent upon water to cement ratio 

*** The range describes a grout with an AC resistivity
C  from 10 ohm - m to 200 ohm-m 

**** Equivalent to a pH of 13.5 and stated porosity.   

 
RESULTS 

 
Current Distribution 
 
One measure of ICCP system efficacy is current density impressed on the cathode. Current densities 
typical of systems that offer cathodic protection in concrete and similar media fall into the range of 
 ሻ 18. For this reason, projected current densities within this range will be	ሺܿ݉^2/ܣݑ	ሻ  to 2	ሺܿ݉^2/ܣݑ0.2
considered in the following to be at a sufficient level to keep the metal protected under normal 
conditions and thereby prevent or significantly delay the initiation and propagation of corrosion.  
 
The model projects that the magnitude of the current density perpendicular to the electrode’s surface 
decays toward a near steady state over a period of ten years, after which it stabilizes until the calcium 
hydroxide at the anode is completely depleted. Thus a conservative estimate of the system’s 
performance prior to the depletion of calcium hydroxide at the anode would use that lower stabilization 
value of the current density. As it will be shown, calculations indicate a time to complete calcium 

                                                 
C That is, the resistivity that corresponds to the effective concentrations and mobilities of the ionic species and that would be 
measured using an alternating current method whereby no net ionic flux occurs during the measurement.  
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distance between the anode and cathodes, the effects of these limiting conditions should be relatively 
independent of shape effects given a similar total anode surface area.  Second, if there is no important 
convective flow (a reasonable assumption in the absence of information to the contrary) it is unlikely 
that the shape of the anode will significantly affect the delivery of reactive species to the anode’s 
surface.  
 
The initial calculations were done assuming a pre-installed ¼ inch diameter anode running along the 
space otherwise used for central wire stand. A small anode is desirable from a design perspective as it 
reduces the cost of the anode material and increases the anode’s mechanical flexibility making it easier 
to work with and avoid short circuits.  Increasing the size of the anode will increase its surface area and 
thereby reduce the current density at the anode for a given total current. A reduction in the anodic 
current density is desirable from an electrochemical perspective since the local depletion of hydroxide 
and rate of dissolution of calcium hydroxide at the surface of the anode are both positive functions of 
the inward current density. Ideally the anode used would be the smallest possible anode large enough 
to ensure cathodic protection over the lifetime of the system without detrimental changes in the 
immediately surrounding grout (or other potential complications not investigated here, such as large 
anodic current densities causing excessive local temperature increase around the anode). 
 
The calculations indicated that an anode of this size would be sufficient to protect the system assumed 
within the range parameters modeled without requiring excessive current demand from the anode. If, 
however, the grout resistivity is significantly higher or the pore hydroxide content is significantly lower 
than what has here been assumed, using a larger anode may be prudent to reduce the current demand 
of the anode or to increase the time to calcium hydroxide depletion at and acidification of the anode.  In 
this context, the model approach is not limiting and other system dimensions and number of strands 
could be easily implemented to explore alternative situations.  

 
Hydrogen Evolution 
 
In electrochemical systems with a pH in the range of 13-14 hydrogen evolution is possible under a 
polarization voltage of -900mV (regular sign convention) versus a standard calomel electrode (SCE)5,6. 
Evolved hydrogen could diffuse quickly into the steel strand, embrittling the steel, and ultimately 
causing failure. For this reason, it is important that the potential of the steel strand under cathodic 
protection does not go significantly beyond the value indicated above. The model projects a strand 
potential safely distant from this value (for instance a potential of -350 mV [regular sign convention] is 
projected using the base case parameter set) when CP is applied, as indicated in the assumptions, to 
non-corroding steel. Since the CP system as simulated here is meant to be implemented when the 
strands are newly put into place, the non-corroding condition that the steel is assumed to be in would 
likely be justified. However, further consideration and model expansion will be necessary to examine 
the likelihood for hydrogen evolution initiation in corroding steel. 

 
FEM Mesh Sensitivity and Current Balance Check 
 
Because of significant sensitivity to distance between nodes in the kinetic model, a very fine maximum 
node separation distance of 0.0005m was chosen. At this level the model was found to be fairly 
insensitive to changes in mesh size. Increasing the maximum node separation distance by an order of 
magnitude to 0.005m (a 99% reduction in node density) was found to increase the minimum stabilized 
cathodic current in the base parameter set.by only 12%, from 0.88 ܣݑ/ሺܿ݉^2	ሻ		to 0.98 ܣݑ/ሺܿ݉^2	ሻ, so 
the results are reasonably stable in a compromise between practical use and computational 
resource/time needs.   
 
Another simple check of model self-consistency is to examine if the total anodic and cathodic currents 
are equivalent or close to equivalent. If they are not equivalent then the model is predicting net charge 
buildup, which would violate the principle of net neutrality (equation 8). An integration of the anodic and 
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cathodic currents showed the current balance to be always within ~2% or better of the total current, 
indicating the robustness of the approach used here.   
 
 

CONCLUSIONS 
 
The exploratory model projections suggest that, within the context of the system configuration assumed 
and tentative selection of  parameters values used, an impressed current cathodic protection system 
installed internally into a grouted duct for the purpose of cathodic protection of steel tensioning strand 
may be feasible (for the case of initially passive steel). In particular: 
 

1. The projected minimum cathodic current attainable was in the range typical of cathodic 
protection systems over a wide range of grout resistivities 

2. The projected steel potential shift for a cathodic current typical of cathodic protection systems 
met a typical criterion for cathodic protection systems. 

3. At steel polarization shift levels typical of cathodic protection systems the projected steel 
polarization did not reach a level that would initiate Hydrogen evolution (if the steel was not 
corroding prior to system polarization).  

4. At current levels typical of cathodic protection, projected anode acidification was slow enough 
that it would not appear to promote appreciable performance deterioration over a 100 year 
design lifetime.  

 
The calculations presented here are initial and exploratory in nature. Given the significant simplifying 
assumptions of the model and limitations of modelling in describing real world electrochemical 
phenomena, empirical validations of the model’s projections will be critical in validating the model’s 
veracity. The more demanding case of polarization of actively corroding steel should be evaluated in 
follow up work.   
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