
A Faster Parallel Algorithm for Analyzing

Drug-Drug Interaction from MEDLINE Database

Sulav Malla, Kartik Anil Reddy, Song Yang

Department of Computer Science and Engineering

University of South Florida

Tampa, USA

{sulavmalla, kartikreddy, songyang}@mail.usf.edu

Abstract

Use of multiple medications can have hazardous effect on

health due to Drug-Drug interaction (DDI). MEDLINE

database contains many articles related to DDI and a random-

sampling-based algorithm has been purposed to automatically

identify DDI by reading the substance field of MEDLINE

records. However, this single threaded algorithm cannot fully

utilize the processing capability of multi-core processors that

are common today. As the number of cores in a single processor

continue to rise, a parallel program that can better utilize these

resources at hand become increasingly important. In this paper,

we introduce a parallel version of the existing algorithm that

can run on multiple cores simultaneously, making the

computation faster. Experimental results on same hardware

show that calculations done using our parallel multi-threaded

program is up to 19 times faster compared to the original single

threaded one.

Keywords—Drug-Drug interaction, Parallel algorithm, Multi-

threading, Text mining

I. INTRODUCTION

Drug-drug interaction (DDI) refers to the change in effect
of a drug when consumed together with another drug. Since
people are generally taking more than one kind of drugs together,
DDI has become a major cause of morbidity and mortality,
leading to increased health care costs [1]. Therefore, doctors and
medical care personnel need to consider possible DDI cases.
MEDLINE (Medical Literature Analysis and Retrieval System
Online) is a wildly used database for life sciences and
biomedical literature. DDIs are usually reported in medical or
scientific articles, hence searching MEDLINE provides a useful
way to identify drug-drug interactions. However, the sheer
volume of results returned on a single search in MEDLINE
makes it impossible to analysis them manually. A random-
sampling-based algorithm has been proposed in [1] to
automatically identify DDI by reading the substance field of
MEDLINE records.

The proposed algorithm was implemented as a single
threaded python program. However, most of the processors that
we find today are multi-core processors. Such single threaded

Figure 1: A single-threaded program vs a multi-threaded parallel
program

program cannot fully utilize the multiple cores that we have at
our disposal. In this project, we re-implemented the algorithm as
a multi-threaded C++ program.

Figure 1 shows the flow of a multi-threaded program. We
can see that multiple threads of a program have separate
individual stack and registers but share code and data region. We
can exploit this to have data that is shared between the threads
(in the data region) as well as data that is private to individual
threads (in the stack region). The difference between
implementing multiple threads instead of multiple programs is
that threads are lightweight and switching between threads takes
less time. As a practical example, if we want to paint 1000 pixels
in the shape of an alphabet ‘A’, we will need to paint one pixel
at each point and move to the next. In case of a multi-threaded
environment with 1000 threads, each thread can paint the pixel
at a separate point at the same time. The same operation in a
multi-threaded environment can take 1/1000th the time it took
(best case) in a single threaded environment.

The rest of the paper is organized as follows. Section II
presents the algorithm and analysis of the existing program.
Next, section III presents our results and we compare the single
threaded program with our multi-threaded program for a sample
drug. Finally, in section IV we draw some conclusions. We have
also included measurements for all the drugs in appendix.

II. METHOD

First, we describe the algorithm very briefly here,
interested readers are encouraged to see [1] for further details.
PubMed is a search engine that facilitates searching the
MEDLINE database. We search PubMed with the drug name
(e.g. ibuprofen) which returns the matching articles. These
articles have various fields like title, abstract, substance, MeSH
(Medical Subject Heading) terms etc. We then separate them
into two groups. Group A consists of all the articles that have
DDI related MeSH terms like ‘drug agonism’, ‘drug interactions’
etc. while the rest of the articles are placed in Group B. After
that, we make a list of compounds and proteins that occurred in
Group A along with their count of occurrence.

In the next step, we randomly sample articles from Group
B, same number of articles that were present in Group A, and
create a similar list of compounds and proteins with their count.
We only include those terms that were found in Group A. This
process of random sampling articles and counting terms in
Group B is repeated 𝑛 times with replacement (we refer to this
as sampling frequency). Now, we have a distribution of all the
compounds and proteins, found in Group A, in Group B.

Next step is to find the probability that count of a term
found in Group A is from the distribution in Group B. If this
probability is low, we can say that this term is related to DDI
since it occurs in Group A very often but rarely in Group B. In
this way, calculating the p-value for each term in Group A, we
have them sorted in descending order. Compounds and proteins
that are related to DDI will surface on top.

The program that was written in Python downloaded the
articles, created the count table by sampling and calculated the
p-values (and z-values). Since the downloading of articles from
PubMed happens serially, multi-threading this part has little
improvement. Hence, we split the program into two, one to
download the articles and write them to files and other to read
these files and do all the calculations. We used the same first
program for downloading the articles (to avoid reinventing the
wheel).

The global interpreter lock (GIL) in Python does not allow
multiple threads to execute in parallel as it provides the CPython
compiler to only one thread at a time (this is important because
multiple threads that run serially take longer than a single thread
due to context switching). Hence, we reimplemented the second
part of the program (that reads in files and does calculation) in
C++. We profile the single threaded version of this C++ program
to identify bottlenecks. We can see in figure 2 that most of the
time is spent on sampling and counting terms in Group B. This
portion of the program takes 80% of the total time for sampling
frequency of 100 where as it grows to 87% for sampling
frequency of 1000. This motivated us to focus on parallel
execution of this portion of the program. Moreover, each
sampling and counting of terms are independent and can run
simultaneously without affecting the result.

In the C++ program, first, we create a Hash table to store
terms (compound and protein) and the number times each term
shows up in Group A. We also initialize a vector for each term
to store the result from sampling (number of occurrences in the
sample). This is the distribution of that term while sampling in
Group B. For Group B, we store each record (all keywords from
a medical article as a single record) in a vector. Next, we sample
Group B 𝑛 (sampling frequency) times by selecting records
randomly. For each sample, we pick the same number of records
as there are records in Group A. From the random records
selected, we count the number of occurrences of each term and
update its respective vector. Once this update is completed for
𝑛 samples, we calculate a ‘z-score’ for each record that
determines the probability of the compound or protein being
involved in DDI.

We observed that implementation with C++ has a better
performance than python. This may be because python is an
interpreted language while with C++ we get a complied program.
Next, to fully utilize the CPU, we want to change this into a

87%

13%

Sampling and counting terms in Group B

Rest of the program

80%

20%

(a) (b)
Figure 2: Percentage of time single threaded C++ program
spends its time on. (a) for sampling frequency of 100 (b) for
sampling frequency of 1000

File read

Thread 1

Start

Calculate value p
and value z

File write

Single Thread

Split to multi-thread to process sampling

Merge results to single thread

Thread 3 Thread 4 Thread 2

Stop

Figure 3: Flow of multi-threads program

multi-threaded parallel program. The most important thing in
parallel programming is that the parallel sections should be
independent from each other. The single threaded program can
be divided into three parts: I/O part (file read and write),
sampling part and other calculation (z-score and p-value). As
explained earlier, we parallelize the sampling part. Since we
initialize the vector that stores the count to the size of 𝑛 with
all zeros, each thread accesses a different part of the vector for
each sampling and there will not be any conflicts. Figure 3
shows the flow of our multi-threaded program.

We use OpenMP API to implement the multi-threaded
program. OpenMP is a very popular and widely used parallel
programming model that is supported by C/C++/Fortran
compiler from many vendors like GCC, Intel, IBM etc. [2].
Multi-threaded parallel programming in OpenMP is done
through a set of complier directives (#pragma) and library
functions. This makes it easy for us to define parallel regions in
the code, the number of threads that we want, which variables to
share between the threads and which ones to make private. For
example, the complier directive #pragma omp parallel is used
to define section of the program that is to run in parallel.
Similarly, we can use the function omp_set_num_threads() to
set the number of threads that we want to use. Figure 4 shows a
snippet of pseudo code of the program that we used.

III. RESULT

We used our own laptop to run the programs and time it.
Three different laptops were used to time execution for 6
different drugs, Aspirin, Cyclosporine, Ibuprofen, Rifampin,
Simvastatin and Valproic Acid. In this section, we discuss
results for the Ibuprofen drug. However, similar results hold for
other drugs and hardware, as can be seen in the tables in the
appendix. The hardware configuration of the laptop used for
measurements of the Ibuprofen drug is as follows, CPU: Intel i7
2.2 GHz quad core processor with 8 logical threads (Hyper-
Threading), memory: 8 GB. We used Intel compiler [3] to
compile the program as it produces faster programs compared to
GCC compilers. As a first step, we execute the program with 1
thread and 8 threads to see how they perform. The number of
threads can be passed as an argument to our program. We choose
sampling frequency of 1000. To profile the CPU utilization of

our program we use the Intel VTune Amplifier [4] performance
profiler.

Figure 5 shows, the time that our program was running
simultaneously on the specific number of logical CPUs. As we
can observe, for the program with 1 thread, almost all the time,
only one CPU is being utilized with the rest 7 CPU remaining
idle. On the other hand, for the program with 8 threads, all 8
CPU were utilized for more than half of the time. We can also
note that about 30% of the time, our program is running on only
one CPU. This may be because we have some serial portions in
the program to read and write files, create multiple threads and
combine the results.

Next, we compare the execution time for different number
of threads and compare it with the original python program. To
compare between them, we measured the total time as well as
calculation time (excluding file I/O time and initializations). The

serial code;
// set the number of threads
omp_set_num_threads(NUM_THREADS);
// define a parallel region
#pragma omp parallel private(variables)
{
 parallel code;
 // parallelized for loop by breaking apart
 // iterations between threads
 #pragma omp for
 for(init;condition;increment)
 {
 body of for loop
 }
}
// end of parallel region
serial code;

Figure 4: OpenMP program pseudo code

(a)

(b)

Figure 5: CPU usage histogram that shows the time the specific
number of logical CPUs were being utilized simultaneously by
our program (a) Simultaneous CPU running our program with
1 thread (b) Simultaneous CPU running our program with 8
threads

0

0.5

1

1.5

2

2.5

3

3.5

Python 1
Thread

2
Thread

4
Thread

8
Thread

16
Thread

32
Thread

E
x
e
c
u
ti
o

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Rest of the program Calculations

Figure 6: Total and calculation execution time for processing
Ibuprofen drug with sampling frequency of 1000

results are shown in figure 6. Our program significantly out
performs the python program. It improves as we increase the
number of threads up to a point. Performance is maximum when
the number of threads is roughly equal to the number of
available local CPUs. We can see that calculation time is
minimum for 16 threads which is 16.5 times faster than the
python program, while the total time is minimum for 4 threads,
with 7.5x improvement. We can also see a trend on time taken
to do rest of the calculation. It gradually increases as we increase
the number of thread. This may be due to the overhead of
creating multiple threads and combining back the results.

Similarly, we conducted experiment for 5 other drugs with
different sampling frequency on other laptops. This time we
used GCC compiler to compile the C++ program. One of the
laptop was an older one with a dual core processor. We
computed the calculation speed up time of 8 threaded program
over the original python program. Figure 7 shows our result for
all the 6 drugs with sampling frequency of 200, 400, 600, 800
and 1000. It can be observed that two drugs, Aspirin and
Valproic Acid, which were measured on the old dual core laptop
has the minimum speed up of about 3. Similarly, 3 drugs,
Cyclosporine, Rifampin and Simvastatin, measured on another
laptop had roughly the same speed up of 6. Finally, Ibuprofen,
which was measured on laptop with comparatively better
configuration and using Intel compiler gives the maximum
speed up of over 15.

IV. CONCLUSION

Based on the results, we conclude that our multi-threaded
program out performs the existing program. Performance
increases as we increase the number of threads and reaches
maximum when the number of threads is roughly equal to the
number of CPUs present. Program compiled with Intel compiler
perform better than the one compiled with GCC. We were able
to achieve calculation times that were more than 15 times faster
than the original single thread program. Moreover, our parallel
program utilized all the available CPUs whenever possible. In
this way, we were able to implement a faster, parallel, multi-
threaded version of the drug-drug interaction algorithm.

ACKNOWLEDGMENT

We would like to thank Dr. Yicheng Tu for providing this
opportunity to work on a database project and his constant

support throughout the process. We would also like to thank
Aditya Chandra Vothgod Ramachandra for his guideline,
continued assistance and providing his previous work on this
DDI project.

REFERENCES

[1] Lu, Y. et al. A novel algorithm for analyzing drug-drug

interactions from MEDLINE literature. Sci. Rep. 5, 17357;

doi: 10.1038/srep17357 (2015)

[2] http://www.openmp.org/resources/openmp-compilers/

[3] https://software.intel.com/en-us/intel-compilers

[4] https://software.intel.com/en-us/intel-vtune-amplifier-xe

0

5

10

15

20

25

30

200 400 600 800 1000

S
p

e
e

d
 u

p

Sampling frequency

Aspirin Cyclosporine

Ibuprofen Rifampin

Simvastatin Valproic Acid

Figure 7: Calculation speed up for different drugs with varying
sampling frequency

APPENDIX

Aspirin

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 2.393 2.051

400 samples 4.26 3.902

600 samples 6.158 5.769

800 samples 7.946 7.547

1000 samples 9.8 9.376

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 1.413 1.247 1.24

400 samples 2.77 2.467 2.453

600 samples 4.141 3.703 3.683

800 samples 5.414 4.953 4.907

1000 samples 7.025 6.318 6.284

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.865 0.703 0.696

400 samples 1.737 1.428 1.414

600 samples 2.603 2.161 2.139

800 samples 3.371 2.792 2.765

1000 samples 4.421 3.712 3.678

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.745 0.577 0.568

400 samples 1.636 1.335 1.319

600 samples 2.212 1.775 1.75

800 samples 2.906 2.48 2.291

1000 samples 3.571 2.885 2.846

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.772 0.596 0.588

400 samples 1.485 1.181 1.161

600 samples 2.221 1.773 1.75

800 samples 2.923 2.361 2.326

1000 samples 3.562 2.89 2.853

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.789 0.614 0.606

400 samples 1.457 1.173 1.158

600 samples 2.169 1.735 1.715

800 samples 2.941 2.378 2.352

1000 samples 3.616 2.92 2.886

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.809 0.639 0.632

400 samples 1.518 1.209 1.194

600 samples 2.26 1.836 1.815

800 samples 2.938 2.371 2.343

1000 samples 3.707 3.033 2.999

Cyclosporine

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 0.824 0.552 0.483

400 samples 1.31 1.028 0.953

600 samples 1.803 1.508 1.423

800 samples 2.323 2.017 1.924

1000 samples 2.788 2.478 2.377

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 0.254 0.201 0.198

400 samples 0.486 0.392 0.386

600 samples 0.726 0.593 0.584

800 samples 0.959 0.79 0.779

1000 samples 1.214 0.989 0.984

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.169 0.117 0.113

400 samples 0.324 0.23 0.224

600 samples 0.483 0.348 0.339

800 samples 0.632 0.46 0.448

1000 samples 0.792 0.58 0.565

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.153 0.1 0.096

400 samples 0.296 0.199 0.192

600 samples 0.42 0.286 0.276

800 samples 0.552 0.378 0.365

1000 samples 0.724 0.496 0.48

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.153 0.1 0.097

400 samples 0.289 0.196 0.189

600 samples 0.424 0.289 0.281

800 samples 0.569 0.393 0.381

1000 samples 0.685 0.474 0.458

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.161 0.107 0.104

400 samples 0.303 0.211 0.205

600 samples 0.459 0.326 0.316

800 samples 0.6 0.429 0.418

1000 samples 0.737 0.526 0.511

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.185 0.133 0.13

400 samples 0.323 0.224 0.218

600 samples 0.518 0.387 0.372

800 samples 0.61 0.438 0.426

1000 samples 0.78 0.566 0.55

Ibuprofen

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 0.984 0.628

400 samples 1.573 1.217

600 samples 2.12 1.734

800 samples 2.626 2.271

1000 samples 3.238 2.864

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 0.234 0.188 0.188

400 samples 0.355 0.282 0.282

600 samples 0.484 0.381 0.381

800 samples 0.612 0.462 0.462

1000 samples 0.708 0.555 0.554

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.158 0.108 0.108

400 samples 0.234 0.159 0.159

600 samples 0.343 0.239 0.239

800 samples 0.43 0.299 0.298

1000 samples 0.533 0.374 0.373

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.112 0.064 0.064

400 samples 0.172 0.086 0.086

600 samples 0.281 0.153 0.152

800 samples 0.308 0.171 0.17

1000 samples 0.367 0.203 0.203

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.104 0.04 0.04

400 samples 0.186 0.071 0.07

600 samples 0.249 0.089 0.088

800 samples 0.332 0.122 0.121

1000 samples 0.43 0.181 0.18

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.146 0.065 0.064

400 samples 0.234 0.091 0.09

600 samples 0.357 0.105 0.105

800 samples 0.404 0.161 0.16

1000 samples 0.45 0.174 0.173

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.295 0.135 0.134

400 samples 0.423 0.241 0.241

600 samples 0.497 0.233 0.232

800 samples 0.522 0.221 0.221

1000 samples 0.572 0.246 0.245

Rifampin

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 0.821 0.546 0.479

400 samples 1.308 1.025 0.949

600 samples 1.829 1.537 1.452

800 samples 2.299 1.997 1.903

1000 samples 2.816 2.502 2.579

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 1.5 0.197 0.193

400 samples 0.496 0.405 0.399

600 samples 0.73 0.594 0.586

800 samples 0.971 0.8 0.788

1000 samples 1.211 0.993 0.978

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.164 0.115 0.112

400 samples 0.323 0.231 0.225

600 samples 0.477 0.345 0.337

800 samples 0.639 0.464 0.453

1000 samples 0.791 0.58 0.566

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.158 0.099 0.097

400 samples 0.285 0.192 0.185

600 samples 0.423 0.29 0.28

800 samples 0.551 0.379 0.366

1000 samples 0.687 0.473 0.456

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.153 0.099 0.096

400 samples 0.293 0.198 0.191

600 samples 0.424 0.287 0.28

800 samples 0.547 0.377 0.365

1000 samples 0.685 0.472 0.458

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.167 0.112 0.109

400 samples 0.328 0.233 0.227

600 samples 0.465 0.33 0.321

800 samples 0.586 0.412 0.399

1000 samples 0.739 0.528 0.513

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.185 0.127 0.124

400 samples 0.341 0.248 0.242

600 samples 0.468 0.336 0.326

800 samples 0.622 0.449 0.437

1000 samples 0.789 0.579 0.56

Simvastatin

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 0.816 0.543 0.477

400 samples 1.31 1.028 0.952

600 samples 1.829 1.515 1.43

800 samples 2.316 2.012 1.919

1000 samples 2.79 2.474 2.374

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 0.247 0.198 0.195

400 samples 0.49 0.392 0.387

600 samples 0.732 0.596 0.587

800 samples 0.961 0.787 0.519

1000 samples 1.199 0.989 0.975

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.17 0.116 0.113

400 samples 0.324 0.232 0.226

600 samples 0.485 0.347 0.338

800 samples 0.636 0.461 0.452

1000 samples 0.783 0.573 0.559

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.153 0.101 0.097

400 samples 0.284 0.192 0.185

600 samples 0.42 0.286 0.276

800 samples 0.555 0.38 0.367

1000 samples 0.703 0.496 0.479

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.151 0.01 0.096

400 samples 0.289 0.453 0.189

600 samples 0.424 0.291 0.282

800 samples 0.572 0.396 0.384

1000 samples 0.696 0.485 0.47

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.162 0.112 0.109

400 samples 0.311 0.214 0.208

600 samples 0.462 0.327 0.319

800 samples 0.581 0.407 0.395

1000 samples 0.731 0.518 0.503

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.172 0.12 0.117

400 samples 0.343 0.25 0.244

600 samples 0.464 0.332 0.323

800 samples 0.636 0.464 0.451

1000 samples 0.784 0.569 0.554

Valproic Acid

Python(single thread)

Number of samples Total All calculation Sampling

200 samples 1.393 1.117

400 samples 2.37 1.136

600 samples 3.423 3.115

800 samples 4.445 4.133

1000 samples 5.424 5.091

C++ with 1 thread

Number of samples Total All calculation Sampling

200 samples 0.862 0.726 0.721

400 samples 1.642 1.449 1.441

600 samples 2.433 2.152 2.138

800 samples 3.311 2.944 2.927

1000 samples 4.187 3.724 3.703

C++ with 2 thread

Number of samples Total All calculation Sampling

200 samples 0.536 0.412 0.407

400 samples 1.108 0.803 0.794

600 samples 1.546 4.242 1.229

800 samples 2.281 1.909 1.886

1000 samples 2.534 2.074 2.052

C++ with 4 thread

Number of samples Total All calculation Sampling

200 samples 0.453 0.338 0.332

400 samples 0.871 0.663 0.652

600 samples 1.27 1.005 0.99

800 samples 1.718 1.347 1.333

1000 samples 2.169 1.74 1.71

C++ with 8 thread

Number of samples Total All calculation Sampling

200 samples 0.476 0.348 0.342

400 samples 0.849 0.666 0.658

600 samples 1.357 1.055 1.039

800 samples 1.753 1.055 1.039

1000 samples 2.16 1.689 1.67

C++ with 16 thread

Number of samples Total All calculation Sampling

200 samples 0.458 0.345 0.34

400 samples 1.172 0.961 0.949

600 samples 1.301 1.029 1.017

800 samples 1.772 1.399 1.381

1000 samples 2.143 1.719 1.694

C++ with 32 thread

Number of samples Total All calculation Sampling

200 samples 0.471 0.364 0.359

400 samples 1.232 1.015 1.003

600 samples 1.31 1.048 1.035

800 samples 1.771 1.423 1.411

1000 samples 2.149 1.711 1.689

