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Abstract 

Use of multiple medications can have hazardous effect on 

health due to Drug-Drug interaction (DDI). MEDLINE 

database contains many articles related to DDI and a random-

sampling-based algorithm has been purposed to automatically 

identify DDI by reading the substance field of MEDLINE 

records. However, this single threaded algorithm cannot fully 

utilize the processing capability of multi-core processors that 

are common today. As the number of cores in a single processor 

continue to rise, a parallel program that can better utilize these 

resources at hand become increasingly important. In this paper, 

we introduce a parallel version of the existing algorithm that 

can run on multiple cores simultaneously, making the 

computation faster. Experimental results on same hardware 

show that calculations done using our parallel multi-threaded 

program is up to 19 times faster compared to the original single 

threaded one. 

Keywords—Drug-Drug interaction, Parallel algorithm, Multi-

threading, Text mining 

I. INTRODUCTION 

Drug-drug interaction (DDI) refers to the change in effect 
of a drug when consumed together with another drug. Since 
people are generally taking more than one kind of drugs together, 
DDI has become a major cause of morbidity and mortality, 
leading to increased health care costs [1]. Therefore, doctors and 
medical care personnel need to consider possible DDI cases. 
MEDLINE (Medical Literature Analysis and Retrieval System 
Online) is a wildly used database for life sciences and 
biomedical literature. DDIs are usually reported in medical or 
scientific articles, hence searching MEDLINE provides a useful 
way to identify drug-drug interactions. However, the sheer 
volume of results returned on a single search in MEDLINE 
makes it impossible to analysis them manually. A random-
sampling-based algorithm has been proposed in [1] to 
automatically identify DDI by reading the substance field of 
MEDLINE records. 

The proposed algorithm was implemented as a single 
threaded python program. However, most of the processors that 
we find today are multi-core processors. Such single threaded 

 

Figure 1: A single-threaded program vs a multi-threaded parallel 
program 

program cannot fully utilize the multiple cores that we have at 
our disposal. In this project, we re-implemented the algorithm as 
a multi-threaded C++ program. 

Figure 1 shows the flow of a multi-threaded program. We 
can see that multiple threads of a program have separate 
individual stack and registers but share code and data region. We 
can exploit this to have data that is shared between the threads 
(in the data region) as well as data that is private to individual 
threads (in the stack region). The difference between 
implementing multiple threads instead of multiple programs is 
that threads are lightweight and switching between threads takes 
less time. As a practical example, if we want to paint 1000 pixels 
in the shape of an alphabet ‘A’, we will need to paint one pixel 
at each point and move to the next. In case of a multi-threaded 
environment with 1000 threads, each thread can paint the pixel 
at a separate point at the same time. The same operation in a 
multi-threaded environment can take 1/1000th the time it took 
(best case) in a single threaded environment. 

The rest of the paper is organized as follows. Section II 
presents the algorithm and analysis of the existing program. 
Next, section III presents our results and we compare the single 
threaded program with our multi-threaded program for a sample 
drug. Finally, in section IV we draw some conclusions. We have 
also included measurements for all the drugs in appendix. 



II. METHOD 

First, we describe the algorithm very briefly here, 
interested readers are encouraged to see [1] for further details. 
PubMed is a search engine that facilitates searching the 
MEDLINE database. We search PubMed with the drug name 
(e.g. ibuprofen) which returns the matching articles. These 
articles have various fields like title, abstract, substance, MeSH 
(Medical Subject Heading) terms etc. We then separate them 
into two groups. Group A consists of all the articles that have 
DDI related MeSH terms like ‘drug agonism’, ‘drug interactions’ 
etc. while the rest of the articles are placed in Group B. After 
that, we make a list of compounds and proteins that occurred in 
Group A along with their count of occurrence. 

In the next step, we randomly sample articles from Group 
B, same number of articles that were present in Group A, and 
create a similar list of compounds and proteins with their count. 
We only include those terms that were found in Group A. This 
process of random sampling articles and counting terms in 
Group B is repeated 𝑛 times with replacement (we refer to this 
as sampling frequency). Now, we have a distribution of all the 
compounds and proteins, found in Group A, in Group B. 

Next step is to find the probability that count of a term 
found in Group A is from the distribution in Group B. If this 
probability is low, we can say that this term is related to DDI 
since it occurs in Group A very often but rarely in Group B. In 
this way, calculating the p-value for each term in Group A, we 
have them sorted in descending order. Compounds and proteins 
that are related to DDI will surface on top. 

The program that was written in Python downloaded the 
articles, created the count table by sampling and calculated the 
p-values (and z-values). Since the downloading of articles from 
PubMed happens serially, multi-threading this part has little 
improvement. Hence, we split the program into two, one to 
download the articles and write them to files and other to read 
these files and do all the calculations. We used the same first 
program for downloading the articles (to avoid reinventing the 
wheel). 

The global interpreter lock (GIL) in Python does not allow 
multiple threads to execute in parallel as it provides the CPython 
compiler to only one thread at a time (this is important because 
multiple threads that run serially take longer than a single thread 
due to context switching). Hence, we reimplemented the second 
part of the program (that reads in files and does calculation) in 
C++. We profile the single threaded version of this C++ program 
to identify bottlenecks. We can see in figure 2 that most of the 
time is spent on sampling and counting terms in Group B. This 
portion of the program takes 80% of the total time for sampling 
frequency of 100 where as it grows to 87% for sampling 
frequency of 1000. This motivated us to focus on parallel 
execution of this portion of the program. Moreover, each 
sampling and counting of terms are independent and can run 
simultaneously without affecting the result. 

In the C++ program, first, we create a Hash table to store 
terms (compound and protein) and the number times each term 
shows up in Group A. We also initialize a vector for each term 
to store the result from sampling (number of occurrences in the 
sample). This is the distribution of that term while sampling in 
Group B. For Group B, we store each record (all keywords from 
a medical article as a single record) in a vector. Next, we sample 
Group B 𝑛  (sampling frequency) times by selecting records 
randomly. For each sample, we pick the same number of records 
as there are records in Group A. From the random records 
selected, we count the number of occurrences of each term and 
update its respective vector. Once this update is completed for 
𝑛  samples, we calculate a ‘z-score’ for each record that 
determines the probability of the compound or protein being 
involved in DDI. 

We observed that implementation with C++ has a better 
performance than python. This may be because python is an 
interpreted language while with C++ we get a complied program. 
Next, to fully utilize the CPU, we want to change this into a 
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Figure 2: Percentage of time single threaded C++ program 
spends its time on. (a) for sampling frequency of 100 (b) for 
sampling frequency of 1000 
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multi-threaded parallel program. The most important thing in 
parallel programming is that the parallel sections should be 
independent from each other. The single threaded program can 
be divided into three parts: I/O part (file read and write), 
sampling part and other calculation (z-score and p-value). As 
explained earlier, we parallelize the sampling part. Since we 
initialize the vector that stores the count to the size of 𝑛 with 
all zeros, each thread accesses a different part of the vector for 
each sampling and there will not be any conflicts. Figure 3 
shows the flow of our multi-threaded program. 

We use OpenMP API to implement the multi-threaded 
program. OpenMP is a very popular and widely used parallel 
programming model that is supported by C/C++/Fortran 
compiler from many vendors like GCC, Intel, IBM etc. [2]. 
Multi-threaded parallel programming in OpenMP is done 
through a set of complier directives (#pragma) and library 
functions. This makes it easy for us to define parallel regions in 
the code, the number of threads that we want, which variables to 
share between the threads and which ones to make private. For 
example, the complier directive #pragma omp parallel is used 
to define section of the program that is to run in parallel. 
Similarly, we can use the function omp_set_num_threads() to 
set the number of threads that we want to use. Figure 4 shows a 
snippet of pseudo code of the program that we used. 

III. RESULT 

We used our own laptop to run the programs and time it. 
Three different laptops were used to time execution for 6 
different drugs, Aspirin, Cyclosporine, Ibuprofen, Rifampin, 
Simvastatin and Valproic Acid. In this section, we discuss 
results for the Ibuprofen drug. However, similar results hold for 
other drugs and hardware, as can be seen in the tables in the 
appendix. The hardware configuration of the laptop used for 
measurements of the Ibuprofen drug is as follows, CPU: Intel i7 
2.2 GHz quad core processor with 8 logical threads (Hyper-
Threading), memory: 8 GB. We used Intel compiler [3] to 
compile the program as it produces faster programs compared to 
GCC compilers. As a first step, we execute the program with 1 
thread and 8 threads to see how they perform. The number of 
threads can be passed as an argument to our program. We choose 
sampling frequency of 1000. To profile the CPU utilization of 

our program we use the Intel VTune Amplifier [4] performance 
profiler. 

Figure 5 shows, the time that our program was running 
simultaneously on the specific number of logical CPUs. As we 
can observe, for the program with 1 thread, almost all the time, 
only one CPU is being utilized with the rest 7 CPU remaining 
idle. On the other hand, for the program with 8 threads, all 8 
CPU were utilized for more than half of the time. We can also 
note that about 30% of the time, our program is running on only 
one CPU. This may be because we have some serial portions in 
the program to read and write files, create multiple threads and 
combine the results. 

Next, we compare the execution time for different number 
of threads and compare it with the original python program. To 
compare between them, we measured the total time as well as 
calculation time (excluding file I/O time and initializations). The 

serial code; 
// set the number of threads 
omp_set_num_threads(NUM_THREADS); 
// define a parallel region 
#pragma omp parallel private(variables) 
{ 
    parallel code; 
    // parallelized for loop by breaking apart 
    // iterations between threads 
    #pragma omp for 
    for(init;condition;increment) 
    { 
        body of for loop 
    } 
} 
// end of parallel region 
serial code; 

Figure 4: OpenMP program pseudo code 

 

(a) 

(b) 

Figure 5: CPU usage histogram that shows the time the specific 
number of logical CPUs were being utilized simultaneously by 
our program (a) Simultaneous CPU running our program with 
1 thread (b) Simultaneous CPU running our program with 8 
threads 
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results are shown in figure 6. Our program significantly out 
performs the python program. It improves as we increase the 
number of threads up to a point. Performance is maximum when 
the number of threads is roughly equal to the number of 
available local CPUs. We can see that calculation time is 
minimum for 16 threads which is 16.5 times faster than the 
python program, while the total time is minimum for 4 threads, 
with 7.5x improvement. We can also see a trend on time taken 
to do rest of the calculation. It gradually increases as we increase 
the number of thread. This may be due to the overhead of 
creating multiple threads and combining back the results. 

Similarly, we conducted experiment for 5 other drugs with 
different sampling frequency on other laptops. This time we 
used GCC compiler to compile the C++ program. One of the 
laptop was an older one with a dual core processor. We 
computed the calculation speed up time of 8 threaded program 
over the original python program. Figure 7 shows our result for 
all the 6 drugs with sampling frequency of 200, 400, 600, 800 
and 1000. It can be observed that two drugs, Aspirin and 
Valproic Acid, which were measured on the old dual core laptop 
has the minimum speed up of about 3. Similarly, 3 drugs, 
Cyclosporine, Rifampin and Simvastatin, measured on another 
laptop had roughly the same speed up of 6. Finally, Ibuprofen, 
which was measured on laptop with comparatively better 
configuration and using Intel compiler gives the maximum 
speed up of over 15. 

IV. CONCLUSION 

Based on the results, we conclude that our multi-threaded 
program out performs the existing program. Performance 
increases as we increase the number of threads and reaches 
maximum when the number of threads is roughly equal to the 
number of CPUs present. Program compiled with Intel compiler 
perform better than the one compiled with GCC. We were able 
to achieve calculation times that were more than 15 times faster 
than the original single thread program. Moreover, our parallel 
program utilized all the available CPUs whenever possible. In 
this way, we were able to implement a faster, parallel, multi-
threaded version of the drug-drug interaction algorithm.  
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APPENDIX 

 
  

Aspirin 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 2.393 2.051  

400 samples 4.26 3.902  

600 samples 6.158 5.769  

800 samples 7.946 7.547  

1000 samples 9.8 9.376  

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 1.413 1.247 1.24 

400 samples 2.77 2.467 2.453 

600 samples 4.141 3.703 3.683 

800 samples 5.414 4.953 4.907 

1000 samples 7.025 6.318 6.284 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.865 0.703 0.696 

400 samples 1.737 1.428 1.414 

600 samples 2.603 2.161 2.139 

800 samples 3.371 2.792 2.765 

1000 samples 4.421 3.712 3.678 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.745 0.577 0.568 

400 samples 1.636 1.335 1.319 

600 samples 2.212 1.775 1.75 

800 samples 2.906 2.48 2.291 

1000 samples 3.571 2.885 2.846 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.772 0.596 0.588 

400 samples 1.485 1.181 1.161 

600 samples 2.221 1.773 1.75 

800 samples 2.923 2.361 2.326 

1000 samples 3.562 2.89 2.853 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.789 0.614 0.606 

400 samples 1.457 1.173 1.158 

600 samples 2.169 1.735 1.715 

800 samples 2.941 2.378 2.352 

1000 samples 3.616 2.92 2.886 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.809 0.639 0.632 

400 samples 1.518 1.209 1.194 

600 samples 2.26 1.836 1.815 

800 samples 2.938 2.371 2.343 

1000 samples 3.707 3.033 2.999 



 

 

  

Cyclosporine 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 0.824 0.552 0.483 

400 samples 1.31 1.028 0.953 

600 samples 1.803 1.508 1.423 

800 samples 2.323 2.017 1.924 

1000 samples 2.788 2.478 2.377 

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 0.254 0.201 0.198 

400 samples 0.486 0.392 0.386 

600 samples 0.726 0.593 0.584 

800 samples 0.959 0.79 0.779 

1000 samples 1.214 0.989 0.984 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.169 0.117 0.113 

400 samples 0.324 0.23 0.224 

600 samples 0.483 0.348 0.339 

800 samples 0.632 0.46 0.448 

1000 samples 0.792 0.58 0.565 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.153 0.1 0.096 

400 samples 0.296 0.199 0.192 

600 samples 0.42 0.286 0.276 

800 samples 0.552 0.378 0.365 

1000 samples 0.724 0.496 0.48 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.153 0.1 0.097 

400 samples 0.289 0.196 0.189 

600 samples 0.424 0.289 0.281 

800 samples 0.569 0.393 0.381 

1000 samples 0.685 0.474 0.458 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.161 0.107 0.104 

400 samples 0.303 0.211 0.205 

600 samples 0.459 0.326 0.316 

800 samples 0.6 0.429 0.418 

1000 samples 0.737 0.526 0.511 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.185 0.133 0.13 

400 samples 0.323 0.224 0.218 

600 samples 0.518 0.387 0.372 

800 samples 0.61 0.438 0.426 

1000 samples 0.78 0.566 0.55 



 

 

  

Ibuprofen 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 0.984 0.628  

400 samples 1.573 1.217  

600 samples 2.12 1.734  

800 samples 2.626 2.271  

1000 samples 3.238 2.864  

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 0.234 0.188 0.188 

400 samples 0.355 0.282 0.282 

600 samples 0.484 0.381 0.381 

800 samples 0.612 0.462 0.462 

1000 samples 0.708 0.555 0.554 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.158 0.108 0.108 

400 samples 0.234 0.159 0.159 

600 samples 0.343 0.239 0.239 

800 samples 0.43 0.299 0.298 

1000 samples 0.533 0.374 0.373 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.112 0.064 0.064 

400 samples 0.172 0.086 0.086 

600 samples 0.281 0.153 0.152 

800 samples 0.308 0.171 0.17 

1000 samples 0.367 0.203 0.203 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.104 0.04 0.04 

400 samples 0.186 0.071 0.07 

600 samples 0.249 0.089 0.088 

800 samples 0.332 0.122 0.121 

1000 samples 0.43 0.181 0.18 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.146 0.065 0.064 

400 samples 0.234 0.091 0.09 

600 samples 0.357 0.105 0.105 

800 samples 0.404 0.161 0.16 

1000 samples 0.45 0.174 0.173 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.295 0.135 0.134 

400 samples 0.423 0.241 0.241 

600 samples 0.497 0.233 0.232 

800 samples 0.522 0.221 0.221 

1000 samples 0.572 0.246 0.245 



 

 

  

Rifampin 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 0.821 0.546 0.479 

400 samples 1.308 1.025 0.949 

600 samples 1.829 1.537 1.452 

800 samples 2.299 1.997 1.903 

1000 samples 2.816 2.502 2.579 

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 1.5 0.197 0.193 

400 samples 0.496 0.405 0.399 

600 samples 0.73 0.594 0.586 

800 samples 0.971 0.8 0.788 

1000 samples 1.211 0.993 0.978 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.164 0.115 0.112 

400 samples 0.323 0.231 0.225 

600 samples 0.477 0.345 0.337 

800 samples 0.639 0.464 0.453 

1000 samples 0.791 0.58 0.566 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.158 0.099 0.097 

400 samples 0.285 0.192 0.185 

600 samples 0.423 0.29 0.28 

800 samples 0.551 0.379 0.366 

1000 samples 0.687 0.473 0.456 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.153 0.099 0.096 

400 samples 0.293 0.198 0.191 

600 samples 0.424 0.287 0.28 

800 samples 0.547 0.377 0.365 

1000 samples 0.685 0.472 0.458 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.167 0.112 0.109 

400 samples 0.328 0.233 0.227 

600 samples 0.465 0.33 0.321 

800 samples 0.586 0.412 0.399 

1000 samples 0.739 0.528 0.513 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.185 0.127 0.124 

400 samples 0.341 0.248 0.242 

600 samples 0.468 0.336 0.326 

800 samples 0.622 0.449 0.437 

1000 samples 0.789 0.579 0.56 



 

 

  

Simvastatin 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 0.816 0.543 0.477 

400 samples 1.31 1.028 0.952 

600 samples 1.829 1.515 1.43 

800 samples 2.316 2.012 1.919 

1000 samples 2.79 2.474 2.374 

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 0.247 0.198 0.195 

400 samples 0.49 0.392 0.387 

600 samples 0.732 0.596 0.587 

800 samples 0.961 0.787 0.519 

1000 samples 1.199 0.989 0.975 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.17 0.116 0.113 

400 samples 0.324 0.232 0.226 

600 samples 0.485 0.347 0.338 

800 samples 0.636 0.461 0.452 

1000 samples 0.783 0.573 0.559 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.153 0.101 0.097 

400 samples 0.284 0.192 0.185 

600 samples 0.42 0.286 0.276 

800 samples 0.555 0.38 0.367 

1000 samples 0.703 0.496 0.479 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.151 0.01 0.096 

400 samples 0.289 0.453 0.189 

600 samples 0.424 0.291 0.282 

800 samples 0.572 0.396 0.384 

1000 samples 0.696 0.485 0.47 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.162 0.112 0.109 

400 samples 0.311 0.214 0.208 

600 samples 0.462 0.327 0.319 

800 samples 0.581 0.407 0.395 

1000 samples 0.731 0.518 0.503 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.172 0.12 0.117 

400 samples 0.343 0.25 0.244 

600 samples 0.464 0.332 0.323 

800 samples 0.636 0.464 0.451 

1000 samples 0.784 0.569 0.554 



 

Valproic Acid 

Python(single thread) 

Number of samples Total All calculation Sampling 

200 samples 1.393 1.117  

400 samples 2.37 1.136  

600 samples 3.423 3.115  

800 samples 4.445 4.133  

1000 samples 5.424 5.091  

C++ with 1 thread 

Number of samples Total All calculation Sampling 

200 samples 0.862 0.726 0.721 

400 samples 1.642 1.449 1.441 

600 samples 2.433 2.152 2.138 

800 samples 3.311 2.944 2.927 

1000 samples 4.187 3.724 3.703 

C++ with 2 thread 

Number of samples Total All calculation Sampling 

200 samples 0.536 0.412 0.407 

400 samples 1.108 0.803 0.794 

600 samples 1.546 4.242 1.229 

800 samples 2.281 1.909 1.886 

1000 samples 2.534 2.074 2.052 

C++ with 4 thread 

Number of samples Total All calculation Sampling 

200 samples 0.453 0.338 0.332 

400 samples 0.871 0.663 0.652 

600 samples 1.27 1.005 0.99 

800 samples 1.718 1.347 1.333 

1000 samples 2.169 1.74 1.71 

C++ with 8 thread 

Number of samples Total All calculation Sampling 

200 samples 0.476 0.348 0.342 

400 samples 0.849 0.666 0.658 

600 samples 1.357 1.055 1.039 

800 samples 1.753 1.055 1.039 

1000 samples 2.16 1.689 1.67 

C++ with 16 thread 

Number of samples Total All calculation Sampling 

200 samples 0.458 0.345 0.34 

400 samples 1.172 0.961 0.949 

600 samples 1.301 1.029 1.017 

800 samples 1.772 1.399 1.381 

1000 samples 2.143 1.719 1.694 

C++ with 32 thread 

Number of samples Total All calculation Sampling 

200 samples 0.471 0.364 0.359 

400 samples 1.232 1.015 1.003 

600 samples 1.31 1.048 1.035 

800 samples 1.771 1.423 1.411 

1000 samples 2.149 1.711 1.689 


