UNIVERSITY OF SOUTH FLORIDA DEPARTMENT OF MECHANICAL ENGINEERING FALL 2003 EGN 4366 MATERIALS ENGINEERING II

DR. ALEX A. VOLINSKY, OFFICE HOURS: MW 3:15-5:15 ENG 2214

CATALOG DESCRIPTION: Applications and structure property relationships of commonly used engineering materials. Steel, non-ferrous alloys and their welding, heat treatment and processing. Introduction to ceramic and polymeric materials.

PREREQUISITES: Materials Engineering I, EGN 3365. If you do not have the prerequisite, you will be dropped from the class regardless of current grade.

TEXTBOOKS AND/OR OTHER REQUIRED MATERIAL: Materials Selection in Mechanical Design, M.F. Ashby, 2nd Edition. Butterworth-Heinemann, Oxford 1999

COURSE OBJECTIVES:

- 1. Students learn how the different classes of materials achieve their elastic modulus.
- 2. Students learn how the microstructure influences the failure of the material for metals, polymers, ceramics and composites.
- 3. Students learn when to expect time-temperature dependent material behavior.
- 4. From a Materials selection perspective, students can select an alloyed material.
- 5. Students learn how processing and fabrication can influence the performance of a material.
- 6. Students learn how the environmental surroundings can influence the performance of the material.
- 7. Students will learn a design philosophy for the selection of materials given:
 - a) Single constraint design applications.
 - b) Multiple constraints design applications.

TOPICS COVERED:

- Origin of elastic behavior for metals, polymers, ceramics, elastomers, and glasses.
- Origin of Inelastic behavior (Non-time dependent) (Yield, Fracture)
- Crystallinity versus Amorphous materials
- Time dependent Inelastic behavior
- Alloying
- Heat treating and annealing
- Environmental degradation of materials
- Materials selection charts
- Material selection procedure
- 10 Selection of material and shape
- 11 Multiple constraints and compound objectives
- 12 Materials processing and design

CLASS/LABORATORY SCHEDULE: 2 – 1.25 Hr Classes Per Week, 15 Week Semester

Assignment of Grades:

Homework 40% Ouizzes Midterm Project 15% Final Project

Final Grade in Class

A = 90 and above

B = 80 to 89

C = 70 to 79D = 60 to 69

F = 59 and below