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The fourth order Runge–Kutta method was used to solve the Thomas–Fermi–Dirac (TFD) equation.
This method simplifies solving the TFD equation and improves the solution accuracy. The electron
density of Cu at the Wigner–Seitz atomic radius was calculated as an example, using the TFD
equation. The same method was used to calculate electron densities of other 24 elements at the
Wigner–Seitz radius. These results demonstrate a successful application of the Thomas–Fermi–
Dirac model in materials research.
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1. INTRODUCTION

Thomas in 19261 and Fermi in 19282 independently cre-
ated the statistical model describing the distribution of
electrons in an atom, called the Thomas–Fermi (TF) model
(equation). In 1930 Dirac3 had introduced the exchange
interaction into the Thomas–Fermi model, and then the
Thomas–Fermi–Dirac (TFD) model was built, known as
the electronic statistical theory. A successful solution of
the TFD equation is helpful to describe the shell struc-
ture of atoms. The numerical solutions of the TFD equa-
tion include the second order Runge–Kutta method, Taylor
series expansions, and the Cheng et al. method. Cheng
et al.4 applied the numerical method, given by Latter,5 to
solve the TFD equation.
The TFD model has been constantly improved. Cheng

et al.6 further modified the TFD model. The modified TFD
electron theory is known as the Thomas–Fermi–Dirac–
Cheng (TFDC) model. The TFDC model proposed two
important boundary conditions at the interface (including
atomic interfaces): the electron densities and the chemi-
cal potentials must be continuous in accordance with the
quantum principles. Density functional theory (DFT) and
TFDC both originated from the TFD model. Currently,
DFT is the most powerful tool for electronic structure
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calculations. In recent years, the method combining DFT
with molecular dynamics simulations has been widely used
in design, synthesis and performance evaluation of mate-
rials, being the basic core technology in computational
materials science. Hao et al.7 studied interactions between
an oxygen atom and C70(D5h�, while Weng et al.8 looked at
the mechanism of O2 adsorption and dissociation on the W
(111) surface. Ono et al. 9 used the first principles calcula-
tion methods for obtaining scattering waves to investigate
transport properties of nanostructures.
Since the use of TFDC is quite simple and convenient,

it has also attracted some attention. In the TFDC model,
Cheng et al. proposed a new concept of “electron density
of atomic surface,” 6 and calculated the electron densities
of some elements at the Wigner–Seitz atomic radius, based
on the numerical solution of the TFD equation.6�10 Based
on the TFDC model, researches addressed many applica-
tions in condensed materials, such as calculating internal
stress in thin film,10 or the dislocation limiting size in some
pure metals,11 along with interpreting the superconducting
mechanism.12 Li13 had established the atomic phase dia-
gram, and experimentally demonstrated it. Ren et al.14�15

explained the softening of nanometer Ag/Cu and Cu/Ni
metallic multilayers.
Based on only four computed items of the power series

expansion, Cheng et al. solved the TFD equation, and
calculated electron density, which is different in their
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own Refs. [6 and 10]. It is possible that the accuracy
of this solution is low, and a more accurate solution of
the TFD equation is desired. Runge–Kutta is an impor-
tant explicit or implicit iterative method, which is often
used to solve common differential equations, due to its
high accuracy and steady convergence. In this paper, the
fourth order Runge–Kutta method was applied to solve the
TFD equation. Using this method, the numerical solution
of the TFD equation for Cu was obtained as an example,
and the electron densities of some other elements at the
Wigner–Seitz radius were calculated. These results aid the
TFDC electron theory applications in materials research
and design.

2. TFD EQUATION

In the TF model, built by Thomas and Fermi,1�2 the elec-
tron density n�x� was expressed as

n�x�= Z

4��3

[
��x�

x

]3/2

(1)

The effect of electron exchange interactions was brought
into the TF model by Dirac,3 and the electron density n�x�
can be expressed at absolute zero as

n�x�= Z

4��3

[
�+

(
��x�

x

)1/2]3

(2)

Here, �= a0��9�
2�/�128Z��1/3, ��x� is the TFD func-

tion, n�x� is the electron density, a0 is the first Bohr’s
radius of hydrogen atom, Z is the atomic number, x is the
non-dimensional atomic radius, r =� ·x is the real atomic
radius, and � = �3/�32�2��1/3Z−2/3 is a term of electron
exchange interactions, which was brought by Dirac.
By using Eq. (2) in the Poisson’s equation, the TFD

equation at absolute zero can be written as

d2�

dx2
= x

[(
��x�

x

)1/2

+�

]3

(3)

For a non-isolated neutral atom, the following boundary
conditions can be defined

��0�= 1 (4)(
d�

dx

)
x=x0

= ��x0�

x0
(5)

The Poisson’s equation assumes that the electron cloud
is spherically symmetric, based on which the TFD model
has been successfully applied to calculate the atomic
scattering factor in X-ray diffraction.4 Thus, the electron
density at the atomic radius can be calculated, as long as
the atomic radius is known.13

3. RUNGE–KUTTA METHOD

The ordinary differential system, expressed as the follow-
ing, can be transferred to the fourth order Runge–Kutta

formula by a series of mathematical transformations:
⎧⎪⎨
⎪⎩
dy

dx
= f �x� y�

y�x0�= y0

where y and f are vectors.
The fourth order Runge–Kutta formula can be

expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+1 = yn+
h

6
�k1+2k2+2k3+k4�

k1 = f �xn� yn�

k2 = f

(
xn+

1
2
h�yn+

1
2
hk1

)

k3 = f

(
xn+

1
2
h�yn+

1
2
hk2

)

k4 = f

(
xn+h�yn+hk3

)

The Runge–Kutta method has the advantage of high cal-
culation accuracy and stability, and can be conveniently
programmed. The local truncation error is O�h5�.

4. THE NUMERICAL SOLUTION OF
TFD EQUATION

Equation (3) is a second order ordinary differential equa-
tion. While its analytical solution can not be determined,
it can be solved by means of numerical integration. Since
�′′�0�=�, the ��x� function around the null point can not
be expanded in the Taylor’s series, but it can be expanded
in a semi-convergent expansion, expressed as in:16

��x�=1+a1x
1/2+a2x+a3x

3/2+a4x
2+a5x

5/2+··· (6)

and

�′�x�= 1
2
a1x

−1/2+a2+
3
2
a3x

1/2+2a4x+
5
2
a5x

3/2+··· (7)

By plugging Eq. (6) into Eq. (3), a series of coefficients
in the expansion can be obtained by comparing coefficients
of the terms with the same power exponent on both sides of
the equation. Coefficient formulas of the top 13 terms are:

a1 = 0

a3 =
4
3

a4 =
3
2
�

a5 =
2
5
a2+

4
5
�2
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Table I. r and � corresponding to a2 in the numerical solutions of the
TFD equation for Cu.

−a2 1.6245 1.6230 1.62241 1.6224 1.6220 1.6210

r×10−10/m Ionic Ionic 1	415 1	391 1	057 0	861
� Imaginary Imaginary 0	028633 0	02964 0	072146 0	117281

a6 =
1
3
+ a2�

2
+ �3

6

a7 =
6
35

a2�
2+ 3

70
a2
2+

5
7
�

a8 =
2
15

a2+
77
120

�2

a9 =
14
45

�4− 1
42

a2
2�

2+ 41
210

a2�−
1

252
a3
2+

2
27

a10 =
17
200

�4+ 137
1400

a2�
2+ 5

28
�+ 1

175
a2
2

a11 =
�5

99
+ 37

3465
�3a2+

15397
83160

�2+ 1
132

a3
2�

2

+ 83
9240

a2
2�

2+ 31
1485

a2+
1

1056
a4
2

a12 =
4
405

+ 509
5040

�3+ 1
21

a2�−
2
175

a2�
4

+ 8
525

a2
2�

2+ 4
1575

a3
2

a13 =
272
9009

�+ 149
6600

�4+ 21457
40040

a2�
2− 1
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a2�

5

+ 557
100100

a2
2+

41
4004

a2
2�

3+ 47
48048

a3
2�

− 15
4576

a4
2�

2− 5
4576

a5
2

The formula for the a2 coefficient doesn’t appear above,
since a2 is defined as the initial slope, which is equal to
�′(0). For the convenience of calculation, an independent
variable w was introduced, defined as x=w2/2. The value
of the initial slope a2 is between −1	7 and −1	5�17 so
its initial value was taken in this interval for the begin-
ning of the calculation. Once the initial slope a2 = �′�0�
was determined, the other coefficients were calculated.

Table II. Electron densities of some elements at the Wigner–Seitz radius.

Element rws×10−10/m Electron density ×1029/m−3 Element rws×10−10/m Electron density ×1029/m−3

Li 1	728 0	232 Zn 1.537 1	96
Be 1	246 1	454 Sr 2.378 0	157
Na 2	113 0	173 Zr 1.771 1	073
Mg 1	77 0	5495 Nb 1.625 1	728
Al 1	582 1	045 Mo 1.549 2	246
Ca 2	181 0	207 Rh 1.486 2	877
Sc 1	775 0	754 Pd 1.520 2	591
Ti 1	616 1	277 Ag 1.597 2	027
V 1	496 1	939 Cd 1.727 1	348
Cr 1	420 2	572 Cu 1.413 2	931
Fe 1	411 2	739 C 1.106 3	283
Co 1	3827 3	132 Ni 1.377 3	261

By using these coefficients in Eqs. (6) and (7), one can get
the values of ��w� and �′�w� at w = 0	48, corresponding
to x = 0	1152 near the null point. Subsequently, solving
the TFD equation can be transformed into finding the ini-
tial value of the first-order ordinary differential equation.
When w < 0	48 (corresponding to x < 0	1152, x can be
seen to be very near the null point), the method of solving
for ��w� is same as that at w = 0	48. When w > 0	48, the
numerical solution of ��w� can be obtained by the fourth
order Runge–Kutta method using a computer program.
In our computation, w interval step was taken as 0.0001.
Although the accuracy of the fourth order Runge–Kutta
method for the TFD equation cannot be determined, it is
definitely higher than that of the second order Runge–
Kutta method.

5. ELECTRON DENSITY CALCULATIONS
FOR Cu AND SOME OTHER ELEMENTS

Equation (5) is the boundary condition for the TFD equa-
tion of the non-isolated neutral atom, and an x0 solution,
obeying this boundary condition, can be determined from
the numerical solution of the TFD equation. If the differ-
ence between both sides of Eq. (5) was less than 10−6,
they were considered approximately equal. For different
initial slopes, a2, the boundary conditions can be obeyed
at different atomic radii, r . A series of numerical solutions
of ��w�, corresponding to different atomic radii can be
solved for each element, and then an initial slope, a2, cor-
responding to the Wigner–Seitz radius, rws, can be picked
out. Finally, by using the initial slope and ��rws� numeri-
cal solution in Eq. (2), one can get the electron density.
In the TFDC theory, the Winge–Seitz radius, which is

different than the usual atomic radius, is often used. The
Wigner–Seitz radius can be determined from lattice con-
stants for any element with the known crystal structure.
The relationships between the Winger–Seitz radius, rws,
and the lattice constant, a, are: rws ≈ 0	3908a for the face
centered cubic lattice, rws ≈ 0	4924a for the body centered
cubic lattice, and rws ≈ 0	4693a for the hexagonal close
packed lattice.13�18
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A larger difference between Cu electronic densities
exists in Refs. [6 and 10], so Cu element was taken as an
example in this paper to show the solution process for the
electron density at the atomic boundary. In the computer
program, a2 was set as a variable, and the corresponding r
and � were determined, with some of the a2 values listed
in Table I (a2 =−1	6245 or −1	6230, corresponding to the
boundary condition of the ionic atom, to be discussed in
another paper). The Winger–Seitz radius, rws, was deter-
mined as 1	413×10−10 m from the lattice constant, and the
r value, closest to rws, was picked out from a series of r val-
ues. The atomic radius of 1.412992 Å, obeying the bound-
ary condition of Eq. (5) is the closest to rws, only when
a2 equals −1	6224093. The value of � under this condi-
tion is used in Eq. (3), allowing to determine the electron
density of Cu as 2	931× 1029 m−3, which is close to the
result in Ref. [6]. The Winger–Seitz radii and electron den-
sities of the 24 common elements were determined using
this method, shown in Table II. The lattice constants of the
24 elements were taken from Refs. [19 and 20].

6. CONCLUSION

(1) The fourth order Runge–Kutta method was applied to
solve the TFD equation numerically. The method can be
conveniently programmed.
(2) Based on the numerical solution of the TFD equation,
the electron densities of 24 elements at the Wigner–Seitz
radius were calculated.
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