
International Journal of Fracture 119/120: 387–405, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Length scales for the fracture of nanostructures

WILLIAM W. GERBERICH1, JOHN M. JUNGK1, MIN LI1, ALEX A. VOLINSKY2,
JOEL W. HOEHN3 and KARL YODER4

1Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455,
U.S.A.
2Motorola Corp., Mesa AZ 85202, U.S.A.
3Seagate Technology, Bloomington, MN 55435, U.S.A.
4BioTrove, Inc., Cambridge, MA 02139, U.S.A.

Abstract. Length scales are essential to the understanding of small volume deformation and fracture in emerging
technologies. Recent analysis by two groups at the atomistic (Horstmeyer and Baskes, 1999) and mesoscopic
(Gerberich et al., 2002) levels have shown the importance of the volume to surface ratio to the indentation size
effect (ISE) at small depths of penetration. We have interpreted this in terms of the plastic work under the contact
and the surface work associated with the creation of new surface or the excess surface stress. Treating this as a
modified Griffith criterion the case is made that this same length scale should apply to the delamination of thin
films. By making this simple equivalency in length scales, an R-curve analysis for crack growth resistance, GR , in
thin film delamination emerges. This recovers the classic σ 2

ysh/E term as well as the fact that interfacial toughness
should scale with the square root of incremental crack growth. Here σys is yield strength, h is thickness and E

is modulus of the film. As applied to thin Cu and Au films bonded to silicon substrates, the model is in good
agreement.
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1. Introduction

Current research into nanotechnology is increasingly aware of the limitations of small scales
in micromachines, MEMS, microelectric interconnects and magnetic recording heads. One
of these limitations is when device reliability is compromised by poor thin film adhesion.
The last decade has seen a considerable effort at applying linear elastic fracture mechanics
concepts toward film fracture problems (Bagchi et al., 1994; Vlassak et al., 1997; Begley
et al., 2000). To a lesser extent there has been progress in understanding the elastic-plastic
thin-film delamination problem particularly on the experimental side of the ledger. This is
partly because of a host of possible length scale variables that can be appropriately incorpor-
ated to fit any given set of data. The confusion comes in as to how to exactly measure an
appropriate length scale and as to which one(s) should be included. To illustrate the problem,
we enumerate in Table 1 some of the possible length scales and evolutionary microstructural
features of importance to small volume deformation and fracture. The first five parameters
with asterisks are some of the possible fundamental length scales which should be considered
in thin film deformation and fracture. We consider interplanar slip band spacing because of
possible sub-cell structures which might evolve during a thermal-mechanical processing his-
tory. The remaining parameters can easily evolve during the deformation and fracture history,
e.g. those associated with nanoindentation induced yield or fracture events.
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Table 1. Possible length sacles∗ and evolutionary microstructural features of importance
in the deformation and fracture of small volumes.

∗ �s Length of dislocation pile-up
∗ �d Distance between sources (near an indenter or in the vicinity of a crack tip)
∗ �p Interplanar spacing for slip bands
∗ d Nanocrystalline grain size
∗ h Film thickness

hp Pile-up around indentation

c Nearest approach of ⊥ to a crack tip

N⊥ Total number of ⊥’s

Ns Number of slip bands

�⊥ Spacing between ⊥’s on a slip band

ns Number of ⊥’s on a given slip band

We believe we have fortuitously arrived at a single length scale parameter that controls
both small volume deformation and fracture behavior of thin films. This occurred because
of two separate pathways we have been following, one dealing with the indentation size
effect (ISE) in bulk crystals and one addressing delamination fracture resistance of thin films.
While these seem quite disparate their commonality was that both phenomena were studied by
nanoindentation. These included the ISE associated with an abrupt yield excursion in single
crystals (Gerberich et al., 2002; Tymiak et al., 2001) and interfacial fracture resistance from
indentation induced blister formation (Kriese et al., 1999; Volinsky et al., 1999, 2002), both of
which involved small volume deformation and fracture. For a number of years now we have
been drawing a parallel between the point forces associated with a crack tip and an indenter
tip (Gerberich et al., 1995) and the fact that the driving forces for the two might evolve similar
localized dislocation arrangements. In that paper (Gerberich et al., 1995) we also noted that
the pile-up height around an indentation behaves similarly, as a function of load, for both con-
tinuum and discretized models. This further suggested that contact mechanics might provide
the connective link between mesoscopic and continuum models. However, it was not until
we examined the same thin film system using these two approaches that we could convince
ourselves that this is truly the case and that the connective link is the length scale that controls
deformation and fracture of small volumes. What we have been able to show is that with no
unknown constants or parameters, the deformation length scale directly determined from a
series of nanoindentations into thin films leads to an R-curve analysis for the delamination
fracture resistance of those same films. This is currently shown for two Cu films of 120 nm
and 3.3 µm thickness bonded with Ti to silicon wafers as well as 250 and 300 nm Au films
on silicon.

2. Theoretical background

Here we consider in order some theoretical background for length scales as applied to the
deformation of bulk material and the deformation and delamination of thin films, all at small
scale. Specifically, we address the deformation and fracture response to nanoindentation at the
nanometer scale.
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Figure 1. For the sample case of a 70 nm tip radius, the contact radius and plastic zone size are drawn to scale.
The corresponding pile-up estimated from Equation (1) would be 8.8 nm representing 35 dislocation loops.

2.1. LENGTH SCALE(S) FOR BULK DEFORMATION

Consider a conical tip with a 70 nm tip radius indenting into a surface producing concent-
ric dislocation loops along glide cylinders. When an oxide breakthrough event occurs these
travel back to the free surface resulting in pile-up as schematically shown in Figure 1. The
sketched semicircle is the calculated ‘elastic-plastic’ boundary from continuum theory. From
experimental observations of dislocation rosette patterns, we know that dislocations extend
well beyond the continuum estimate. For example, from AFM profiles, we know the rosette
pattern extended well beyond the pile-up region observed at the surface, measured to be
500 nm and > 3000 nm, respectively (Gerberich et al., 2001). In addition, we now know that
dislocations are emitted under the tip prior to the displacement excursion and that these are
released commensurate with the yield excursion. Nevertheless, the continuum theory appears
to capture the essence of the plastic pile-up process.
An example of a yield excursion and the corresponding pile-ups in a 〈100〉Ta single crystal is
shown in Figure 2. In a recent paper (Gerberich et al., 2001), the continuum representation of
pile-up (Harvey et al., 1993) was found to give a good fit to plastic pile-up as determined by
AFM measurement. For the contact radius, a being much smaller than the plastic zone size
radius, c, plastic pile-up, hp at the contact edge is given by

hp(a) ∼= (1 − ν)
σys

E

(
c3

a2

)
π

2
(1)

as formulated from Johnson’s cavity model of contact mechanics (Johnson, 1970). In prin-
cipal, this maximum pile-up should relate to the release of dislocations forming pile-up, as is
idealized in Figure 1. Given that pile-up should be some fraction of the dislocations formed
during the yield excursion, δexc, and that these to first order are δexc/b dislocations, where b is
the Burger’s vector, we find

h(a) ∼= a′nsb; α′ < 1 (2)

From previous work (Gerberich et al., 2002) on the indentation size effect (ISE) we had shown
that the volume to surface ratio could explain the increases in hardnesses observed at very
small depths of penetration with δ ≤ 300 nm. The hypothesis was that the surface work was
commensurate with the volume work and that this led to a constant volume (V ) to surface
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Figure 2. Yield excursion around a 1 µm radius diamond tip showing (a) displacement jump and (b) resulting
pile-up measured by AFM.

ratio (S) ratio at small depths. We had previously described this plastic volume under the tip,
2πc2/3, and contact surface area, πa2, as a length scale, �s , giving

�s = V

S
= 2c3

3a2
(3)

in terms of the contact radius, a, and plastic zone radius, c. Furthermore, the volume work of
plastic deformation τysc

2δ/2 and the surface work πa2γs gave

WV

WS

= τysδc
3

3a2
. (4)

Combining (3) and (4) gives this work ratio in terms of the length scale to be

WV

WS

= 3τysδ�s

4πγsc
. (5)

From the data presented elsewhere (Tymiak et al., 2001) this ratio is shown for two sets of
〈100〉 single crystal data of Al and W where three different tip radii were utilized in each
case. A fourth sharpest tip for each was not considered to avoid complications of nonspherical
contact. These data in Figure 3 strongly suggest that the surface work is an appreciable portion
of the total work for the first several hundred nanometers of penetration. The separation of the
data within each material is clearly due to the δ/c ratio with sharper tips producing a greater
plastic penetration for the same plastic zone size producing a greater portion of volume work.
The separation of the data between the two materials is mostly due to the yield stress to surface
energy ratio with the dimensionless parameter τys�s/γs being 670 for 〈100〉 W and 240 for
〈100〉 Al. This further suggests that for small length scales the surface work could become
extremely important as this dimensionless parameter drops below 100.

This prompted us to examine Equations (1) and (2) more closely since the plastic pile-up
of Equation (1) is directly related to this length scale as it contains c3/a2. As we have recently
discussed (Gerberich et al., 2001), the number of dislocations emitted, which then form a
piled-up slip band, is obtained from Equations (1) and (2) eliminating h(a) to give
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Figure 3. Volume to surface work ratio as a function of depth for a tungsten single crystal with �s
∼= 4700 nm,

τys = 400 MPa and γs = 2.8 J m−2 and for an aluminum single crystal with �s
∼= 7900 nm, τys = 30 MPa and

γs = 1.0 J m−2. Indenter tip radii are those reported elsewhere (Tymiak et al., 2001).

ns = π(1 − ν)σysc
3

2α′bEa2
. (6)

Elimination of c3/a2 through Equation (3) and substituting τys/µ for σys/E gives

ns = π�s(1 − ν)

2bα

τys

µ
(7)

with α = α′ · (3/2). Since α′ < 1, it is tempting to take α ∼ 1 which then makes Equa-
tion (7) identical to the simple pile-up theory of Eshelby et al. (1951). The simplified picture
of Figure 1 is that an inverse pile-up forms and at the yield excursion these release into the free
surface causing topographical pile-up around the indenter tip. It is significant that Equation (1)
is from continuum theory appropriate to the macroscale while Equation (7) is from dislocation
theory appropriate to the mesoscale. This is of further interest since the original basis for
Equation (3) was that for extremely small contacts into single crystals, the surface work was
nearly as important as the volume work (Gerberich et al., 2002). This strongly suggests that a
V/S length scale may apply equally well to the smallest of volumes that atomistically may be
extremely sensitive to surface states and larger volumes that mesoscopically may be controlled
by dislocation structure.

Because this appeared to work so well for small volume penetration into bulk single
crystals, it was decided to apply this to the deformation of thin metal films bonded to and
constrained by relatively rigid elastic substrates. Herein then lies the key. When we drastically
change the size scale of the component as in thin films, how does this change the length
scale(s) appropriate to deformation and fracture. As discussed above, in Table 1 we enumer-
ated the possible length scales and a few of the evolving structural parameters that might be
involved in deformation and fracture of thin films. The length scale for a thin film, clearly
smaller than that for a corresponding single crystal, could be a dislocation pile-up length,
a nanocrystalline grain size, d, which scales with thickness but not necessarily linearly, or
film thickness, h, itself. The other parameters in Table 1 tend to be evolutionary during a
point contact process and can eventually lead to friction changes, wear, film fracture or film
delamination. Let us first consider definition of the V/S value for thin films as may be import-
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Figure 4. Plastic volumes associated with V/S for (a) a conical indenter into a constrained thin film producing a
plastic zone radius of c; (b) a conical indenter producing a contact diameter of 2a0 producing an initial crack of
∼ 2b0 which grows to 2b under increasing load forming a plastic zone of RPI

.

ant to any of these deformation and fracture processes. This is then followed by application to
a film delamination process.

2.2. LENGTH SCALE FOR THIN FILM DEFORMATION

An in-depth series of tests (Kramer et al., 2001) for four different aluminum films of 0.34, 0.5,
1 and 2 µm thickness gave the relationship between the plastic zone size to indenter contact
radius, c/a, and the normalized film thickness to be( c

a

)2 = αh

a
(8)

with α = 5.3. The extent of plasticity depends on the degree of constraint and the yield stress.
For smaller thicknesses, h, the substrate more easily constrains plastic flow coupling with an
elevated yield stress to reduce c/a. For greater penetration and hence greater contact radii, a,
the constraint factor reduces c/a. For a thin film, it is simple to translate this into a volume
to surface ratio for indenters of rotational symmetry, cylinders, spheres or cones. A contact
radius, a, giving a surface area of πa2 and a constrained plastic zone, c, of πc2h gives

�s = V

S

∣∣∣∣
constrained

= πc2h

πa2
. (9)

See the schematic of Figure 4a.
Elimination of c through (8) and (9) gives

�s = αh2

a
. (10)

In reality this appears to be a mixed length scale since it depends both on the film thickness
and the sharpness of the indenter which controls the contact radius for a given penetration
depth. One notes that this length scale can be quite small for film thicknesses on the order of
300 nm. Since a 1 µm radius indenter penetrating to the film/substrate interface would give
a contact radius of 720 nm, �s

∼= 670 nm from Equation (10), about an order of magnitude
smaller than the size scale for the corresponding single crystals reported elsewhere (Gerberich
et al., 2002).
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2.3. LENGTH SCALE APPLICATION TO THIN FILM DELAMINATION

If the volume to surface ratio concept is controlled by the balance of surface work and plastic
energy dissipation, clearly it is applicable to thin film delamination which can follow the
modified Griffith criterion. This is schematically shown in Figures 4a and 4b for indentation
and film delamination. With initial indentation only plastic deformation in a zone of length
2c forms as addressed above. This defines �s = V/S. With the slightest increase of load this
could trigger interface cracking at 2b0 which then propagates and arrests at 2b. Now the plastic
energy dissipation of importance to arrest is the deformation in the plane strain plastic zone
at the advance of the crack front. We use the plane strain zone for two reasons here. First,
we will apply this to films on rigid substrates where the plasticity is constrained. Second, a
further constraint is provided by a superlayer of a high modulus material such as tungsten or
tantalum nitride which has been applied on top of the ductile film to store elastic energy for
the crack propagation process. This superlayer technique has been the subject of a number of
recent investigations (Tymiak et al., 1999; Volinsky et al., 2002). This constrained plane strain
plastic zone size is given by

RPI
= K2

I

3πσ 2
ys

, (11)

where KI is the applied stress intensity factor. At this point the plastic volume for arrest can be
assessed considering a plastic annulus of outer diameter, b + RPI

inner diameter b and height
giving

V = RPI

[
π [b + RPI

]2 − πb2RPI

] = 2π
(
bR2

PI
+ R2

PI

/
2
)
. (12)

The corresponding surface area created by this event is the film delamination given by

S = π(b2 − b2
0) = π

[
(b0 + 	b)2 − b2

0

] ∼= 2π	b

(
b0 + 	b

2

)
. (13)

From (12) and (13) we see that the ratio is

V

S
= 2R2

PI
b + R3

PI

2	bb0 + 	b2
. (14)

For a number of trials using a sensible range for the incremental crack growth (blister size)
and the plastic zone size we calculated V/S from Equation (14) to be

25R2
PI

16	b
< �s <

10

3

R2
PI

	b
; 2b0 < (	b0, RPI

) < 8b0 (15)

which varies by about a factor of two. We are inclined toward the upper limit which rep-
resents crack-tip plastic zones smaller than the contact plastic zone. At this point we make
two simplifying assumptions, one tenuous and one supported by observation. The first is that
the length scale associated with plastic deformation during thin-film indentation is the same
as that associated with producing crack-tip plasticity in thin films. Consider a typical thin
film delamination fracture with KIc

∼= 1 MPa m1/2 for a 300 nm thick film having a yield
strength of 500 MPa. This gives a plane strain plastic zone at the crack tip to be 420 nm
from Equation (11) and compares to the 1000 nm indentation plastic zone calculated from
Equation (8). Since the volume scale of these two zones is similar, we propose that the same
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Figure 5. SEM image of the focused ion beam cross-section of a delamination in Cu film.

length scale should apply. The second assumption, as supported by observations using focused
ion-beam machining (FIB) is that the contact radius just prior to delamination, a0, is the same
as the initiation defect size, b0.
As seen in Figure 5, a FIB cross-section of a copper film delaminated from a silicon wafer
shows this to be reasonable. With �I

s ∼ �c
s being the same size scale for indentation (I ) and

cracking (c) of these films and a ∼ b0 one finds from (10), (11) and the approximate upper
limit of (15) that

�s = αh2

b0

∼= 3R2
PI

	b
∼= K4

I

3π2σ 4
ys	b

. (16a)

From the first and fourth equalities this gives

KI =
(
π

√
3
)1/2

σys�
1/4
s 	b1/4. (16b)

From the second and fourth equalities, this reduces to

KI
∼= σys(πh)1/2

(
3α	b

b0

)1/4

. (16c)

Given that the strain energy release rate is K2
I /E, we see that this represents a resistance curve

of

GR = πσ 2
ysh

E

(
3α	b

b0

)1/2

, (17a)

where 	b/b0 is the ratio of incremental crack extension to the initial defect size and σ 2
ysh/E is

essentially the leading term in nearly all thin film resistance models involving plasticity. This
proposed R-curve behavior for forced thin film crack extension is seen to evolve directly from
a simple volume to surface length scale. To recapitulate, we propose that both indentation and
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Figure 6. (a) No buckling during indentation; (b) double-buckling during indentation; (c) single-buckling after
the indenter tip removal.

Figure 7. Optical micrographs of indentation induced blisters with (right) and without (left) a W superlayer.

fracture occurring from small volume deformation are controlled by the same length scale and
that this leads to a delamination resistance criteria. Some verification of this proposed model
based on existing thin film Cu and Au data follows.

3. Experimental (Cu)

A considerable amount of thin-film Cu delamination data exists as derived from superlayer
indentation (Tymiak et al., 1999; Volinsky et al., 2002). A schematic of this test is shown
in Figure 6. This has shown that the thin film fracture energy increases with film thickness,
a result consistent with 4-pt. bend data independently determined by Lane and Dauskardt
(2000). An example of the blister formed by indenting a 1 µm film of W bonded to a Cu film
with a Ti underlayer between the Cu and the silicon substrate is shown in Figure 7.

At the time we noted a typical factor of three scatter in adhesion energy which we originally
attributed to a b/b0 effect different than that represented by Equation (17a). Consider then



396 W.W. Gerberich et al.

Figure 8. Fit of Equation (8) to nanoindentation produced plastic zone radii, c, normalized on contact radii, a, as
a function of a/h with h being film thickness. For these Cu films, α ∼= 4.8.

the case for the same film loaded repeatedly to ever increasing loads at different indentation
locations as was accomplished here. Assume the crack starts in each case when the penetration
reaches a critical contact radius, say b0 ∼ h, since then the spherical indentation nearly reaches
the interface. It is easy to see that if the penetration continues that 	b/b0 increases and the
resistance must correspondingly increase to support larger stored elastic energy release rates
at higher applied loads. This is different from a purely brittle interface where a crack, once
triggered, will grow and then arrest with the larger the b/b0 the lower the fracture resistance.
This latter result is obtained from the driving force side of the equation as has been derived
by Marshall and Evans (1984) and Rosenfeld et al. (1990). The analysis associated with
Equation (17a) concerns itself with the resistance side of the equation and what happens if
further crack extension along an elastic-plastic interface beyond the initial arrest is driven by
ever increasing loads. Equation (17a) is consistent with the slow crack growth observations
of Au/Al2O3 interfaces (Lipkin et al., 1998) and remarkably similar to schematics showing
resistance curves (
R vs. 	a) for models based upon the embedded process zone (Evans
et al., 1999).

To ascertain if such a simple length scale model can predict crack growth resistance we
reexamined some Cu thin film data based on the superlayer indentation technique. For 120 nm
and 3.3 µm thick Cu, data are shown in Table 2. Referring to the schematic of Figure 4, we
show the corresponding values of b/b0, penetration depth, δ, incremental crack extension,
	b, and the measured strain energy release rate from laminate composite analysis (Kriese
et al., 1999). The latter is an extension of the Marshall and Evans (1984) analysis. In the
tabulation for both thicknesses, it is seen that as 	b/b0 increases, GI generally increases. For
a more quantitative comparison, it was necessary to obtain the length scale relationship as had
been accomplished for aluminum films and described at Equation (10). For Cu thicknesses of
200 nm to 2000 nm deposited on Si substrates with a TiW innerlayer, we have preliminary
results. For these two thicknesses, we find that the form of Equation (10) is similar with the
only difference being the constant α ∼ 4.8. This is shown for one thickness in Figure 8. This
gives

GR = 12σ 2
ysh

E

(
	b

b0

)1/2

(17b)
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Figure 9. Crack growth resistance of Cu films as a function of incremental crack extension compared to
Equation (17b).

and is seen to correspond well to the data of Table 2 reproduced in Figure 9. Here, we have
used σys = 600 MPa for the 120 nm film and σys = 460 MPa for the 3300 nm film. Equa-
tion (17b) slightly underpredicts the thicker films and overpredicts the thinner ones in Figure 9
implying that the factor of 16 difference in toughness predicted is too small. On the other hand,
using a 4-pt. bend technique, Lane and Dauskardt observed only a factor of four increase in
toughness for the same increase in thickness. Note that this difference in the experimental
values could be real due to differences in bond strengths giving differences in 	b/b0 for the
same film. In these two sets of data, Tymiak et al. (1999) and Volinsky et al. (2002) used a
Ti bond layer while Lane and Dauskardt (2000) used a Ta/TaN bond layer between the Cu
and the substrate. Furthermore, there is a degree of uncertainty about a0 ∼ b0 which could
easily account for any difference between prediction and observation. For these reasons we
propose that this type of volume/surface approach be a serious candidate for the length scale
controlling deformation and fracture of small volumes.

4. Experimental (Au)

Since extensive applicability of scratch testing has been shown for Au films with a thin DLC
layer as a superlayer, we report here on preliminary results. First, it was found that indentation
deformation into bare Au films with no superlayer gave a similar relationship for length scale
to Equation (8) and Figure 8. In Figure 10, it is seen that Equation (8) fits the data quite well
for 300 nm thick Au films with α = 15. Considering scratch testing, we found that multiple
crack initiations and arrests occurred during a single scratch. With some scatter from film to
film, a good example is shown in Figure 11. One could use the maximum and minimum loads
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Table 2. Indentation superlayer induced delamination of Cu films.

Cu thickness, nm Depth, δ, Delamination (	b/b0)1/2 GI , obs.

nm radius, b, nm

120 546 6800 1.67 2.2

555 6800 1.67 2.3

805 8400 1.91 4.5

819 9000 2.00 3.7

830 8300 1.90 5.6

941 10900 2.25 3.2

952 11200 2.29 2.9

1067 11900 2.37 3.9

1083 12100 2.39 3.9

1116 11700 2.35 5.0

1549 22300 2.42 9.1

1869 21200 3.28 11.9

1892 31900 4.09 8.4

1910 22300 3.37 9.0

1915 21900 3.34 8.95

3300 1767 6500 0.95 59.9

1783 6700 0.985 57.3

1811 6700 0.985 60.6

2344 7700 1.12 131.1

2351 8200 1.19 101.3

2412 8200 1.19 115.6

2818 9900 1.38 123.7

2853 9600 1.35 146.5

3091 10100 1.40 182

as measures of initiation and arrest. More complete data are shown in Table 3 appropriate
to Figure 11. Here the contact radius, is reported in the first column of Table 3. Somewhat
different in scratch testing, compared to normal indentation, is that after the first delamination
event, the initial crack size, b0, is governed by the prior delamination event. That is after the
first crack initiation and arrest, we have a contact radius, a, the initial crack size where the
previous event arrested, b0, and the crack size that allows a buckling instability for the next
event, b. This is schematically depicted in Figure 12 for the data in Table 3. Here it is seen that
the load on the contact area, the cross-hatched region, has initially produced a delaminated
region indicated by the outer dashed circle. When the contact moves to the second cross-
hatched region, it is pulling on a region of the film indicated at 589 nm at the trailing edge.
The crack at this stress concentration point starts growing slowly until it becomes large enough
to re-initiate the delamination process, coupled with the increasing load. From the values of
the maximum loads, the maximum friction coefficients, and the contact radius, a, one can
first determine the normal stress and secondly the tangential stress, σθθ . This is the first σθθ
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Figure 10. Nanoindentation produced plastic zone radii, c, normalized on contact radii, a, as a function of contact
radii on the film thickness (a/h).

Table 3. Parameters and calculated tangential stresses and G values appropriate to
sample Au12S01, h = 250 nm, σys = 496 MPa.

a0 b [sin−1(a/c)]2 b0
a PL

f PN
f σN µf

g σθθ
b σθθ

c Gcalc
I i

d GIi
e

nm nm nm µN µN GPa MPa MPa J m−2 J m−2

274 648 0.191 589 40 1060 4.49 0.519 2330 2350 8.31 10.6

303 648 0.237 589 220 1320 4.59 0.458 2100 2530 12.0 10.7

334 722 0.231 613 320 1430 4.09 0.455 1860 1650 5.55 9.1

352 759 0.233 629 380 1520 3.90 0.474 1850 1610 5.56 9.6

379 833 0.223 677 500 1640 3.55 0.442 1610 1450 4.74 7.6

399 870 0.227 702 570 1780 3.55 0.455 1615 1530 5.65 8.1

417 889 0.238 726 540 1860 3.40 0.457 1555 1670 7.73 8.1

ab0 from geometric construction in Figure 12b.
bσθθ from normal stress times friction coefficient at initiation?
cσθθ from Equation (A-3).

dGIi from with GIi = 4σ 2
θθ b

πE

[
sin−1

(a

b

)]2
with σθθ

c.

eEquation (A-3) except with σθθ
b.

fPL and PN are lateral forces at arrest and normal force at initiation, respectively.
gµf is the friction coefficient at the local maximum load prior to each delamination
event.

indicated in Table 3 and is considered to be the experimental value for each initiation event.
Measuring a and b then allows a determination of both KIi and hence GIi at initiation.

Previous scratch testing of very thin films (Benjamin and Weaver, 1960; Burnett and Rick-
ersby, 1987; Verkataraman et al., 1992, 1993), showed that delamination of Pt, Cr and Au
films was possible and could lead to quantitative assessment of fracture energies. Because of
uncertainties in the stress distribution at the front of an advancing stylus where the material
is generally elastic-plastic, it is more appropriate to use a stress intensity approach and the
furthest advance of the crack front which is more nearly elastic. This has been used by Hoehn
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Figure 11. Raw data for sample Au12S01 showing normal (imposed) and lateral forces at the left and normal and
lateral displacements to the right. The forces are in µN while the displacements are in nm (top) and µm (bottom).

et al. (1995) for scratch analysis of relatively brittle bulk materials and Turner and Evans
(1989), for delamination of thin films. Knowing the contact radius, a, and the half-crack, c,
associated with delamination/buckling extending from the contact, one can calculate the stress
intensity from

KI = 2σθθ

√
b

π
sin−1

(a

b

)
, (18)

where σθθ is the tangential stress that can be defined by a lateral force transducer of the friction
coefficient times the normal stress, µσN . Note here that the scratch track width, 2a, can be
defined by geometry. For the approximate 90◦ cone with a spherical tip of this study, the tip
area function was experimentally determined to be

Atip = 3.866 + 1.516 × 103δ + 3.319 × 10−2δ2 + 2.509 × 10−3δ3 (19)

in nm2 units. Here, δ is the vertical displacement of the tip into the surface in nm. Because
of the circular shape of the contact, this then allowed the contact radius, a, to be determined
from

√
A/π . With the extent of delamination, 2b, defined by friction force (deflection mode

AFM) microscopy, all parameters are known to determine KI from Equation (18).
With the first column of σθθ values in Table 3, GIi , was determined. Similarly, the value of
GIA, the strain energy release rate at arrest, was determined using the lateral force at arrest
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in column five of Table 3 to define σθθ at arrest. These values on initiation and arrest were
compared to theoretical estimates determined in the following way. For arrest, we initially
attempted to use the theoretical resistance, GR, from Equation (17a) knowing that the yield
strength of this 250 nm Au film was 496 MPa. One assumption was that the length scale
constant, α, for the 300 nm Au film of Figure 10 was also appropriate to the data of Figure 11.
However, the agreement of GIA at arrest and GR from Equation (17a) was poor. We reasoned
that the major difference between the Au and Cu data was that a 1 µm superlayer of W on
the Cu films did not compare to the 70 nm diamond like carbon superlayer on Au. Whereas
plane strain was assumed for Cu, the thinner DLC on the Au films made the latter more nearly
plane stress. With that being the case, the 3 in Equation (17a) disappears and with α = 15,
this becomes

GR = 12.2σ 2
ysh

E

(
	b

b0

)1/2

(17c)

not too different from Equation (17b).
A similar analysis was conducted for the initiation value, GIi , in terms of the resistance

of the side ligaments indicated by the shaded regions of Figure 12. This is detailed in the
Appendix. In terms of the side-ligament yield behavior, the tangential stress σθθ shown in
Table 3 agrees reasonably well with the tangential stress determined directly from the normal
stress and the friction coefficient. With no adjustable constant (we take β = 1), the theoretical
estimate for initiation is calculated from σθθ and Equation (18). The comparison shown in
Figure 13 is reasonably consistent with at least some expectations. First for arrest, the R-
curve prediction is quite good and demonstrates that the greater amount of slow crack growth
required increases the resistance at large values of b0. That is the toughness at arrest increases
along the scratch track. On the other hand, the increasing contact area compensates for the
increased lateral force at initiation with the resulting values of GIi , being nearly constant or
slightly decreasing along the scratch track. The result appears to be that while GIi is nearly
constant, the value of GIA or GR for the crack arrest condition increases quite rapidly. As
a result, these two values tend to converge being separated by no more than a factor of two
toward the end of the scratch.

5. Summary

We have first shown a connectivity between mesoscopic and macroscopic deformation theor-
ies through plastic pile-up around a nanoindenter. This recovers the classic dislocation pile-up
model of Eshelby et al. (1951). To achieve this, a volume (V ) to surface (S) ratio model has
been invoked, previously shown (Gerberich et al., 2002; Tymiak et al., 2001) to predict the
indentation size effect (ISE) at small penetration depths. The length scale, �s = V/S has then
been shown to apply to both small volume deformation and fracture through nanoindentation
studies of thin film copper and gold bonded to silicon substrates. This produces a fracture
toughness which is proportional to the fourth root of the length scale or, alternatively, a
resistance curve with the resistance proportional to the square root of the incremental crack
growth. With increasing crack growth it is shown that Cu bonded to silicon substrates with a
thin Ti layer increases its fracture resistance by a factor of three.

The R-curve behavior for crack arrest is shown to apply to Cu films 120 and 3300 nm thick
and Au films 250 nm thick. In the former fracture was by the superlayer indentation technique
while in the latter it was by the superlayer scratch test. Also shown with the scratch test is that
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Figure 12. (a) Scratch track in 250 nm Au film showing multiple buckle delaminations (b) schematic showing
local instabilities resulting in crack propagation at increasing values of b0.

multiple values of initiation and arrest may be determined with the values tending to converge
as the scratch track lengthens.
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Figure 13. Initiation and arrest energies for Au12S01 as a function of delamination radius along the scratch track.
Solid curves are based upon Equations (18) and (A-3) for σθθ at initiation and Equation (17c) for arrest.

Appendix: Determination of σ calc
θθ

Here, σθθ as used in calculations for Table 3 is µf σN where σN is defined as the normal force
divided by contact area πa2 and µf is the measured friction coefficient. But the resistance to
lateral force is the vertical shaded region beyond the contact in Figure 12b that is being re-
quired to grow prior to the next instability. We call this contact area the resistance to continued
crack growth. A measure of this resistance is the increased crack area which will form times
the thickness of the thin film, 2(b−b0)h, as indicated at a given point of crack advance by one
of the vertical shaded bars in Figure 12b. When this reaches a maximum in the shaded region
or the outside extremities of the dashed region, the next buckling instability curve occurs. To
first order we propose that the lateral force divided by this maximum uncracked ligament area,
A�, is proportional to σθθ , as given by

σθθ = β2µf PN

A�

, (A-1)

where β2 is some constant near unity.
In terms of a crack growth advance at this buckling instability, rather than using the meas-

ured normal load, we assume the normal load is proportional to the contact area times the film
yield strength giving

PN = β1σysπa2 (A-2)

where β1 a some constant near unity.
We can thus describe the σθθ , tangential stress, from (A-1) and (A-2) to be

σθθ = βµf σysπa2

2(c − c0)h
(A-3)
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with β = β1β2 ≈ 1.14.
Knowing that the yield strength of sputter deposited Au films could be given by (Volinsky

et al., 2002)

σys = σAu
[
1 + βAuh

−1/2] (A-4)

with σAu = 315 MPa and βAu = 0.287 µm1/2, we determined the yield strength to be 496 MPa
for the 250 nm thick film. This allowed us to calculate σθθ from Figure 12 which assumes
contact regions (the cross-hatched areas) to trigger the sequential series of load drops seen
in Figure 11. With values of b0 from the geometrical construct in Figure 12b, the values of
a from the tip area function, and values of b from atomic force microscopy, everything was
available for calculating σθθ from Equation (A-3). These and other values as discussed in the
text are reported in Table 3. The friction coefficient reported came directly from the transducer
output of PL/PN , the lateral and normal forces at the initiation (local maximum) of each event
in Figure 11.
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