Graphene induced growth of Sb$_2$WO$_6$ nanosheets for high-performance pseudocapacitive lithium-ion storage

Fei Wang $^a$, Yong Liu $^{a,**}$, Huijie Wei $^a$, Guangxin Wang $^a$, Fengzhang Ren $^{a,***}$, Xianming Liu $^b$, Min Chen $^c$, Alex A. Volinsky $^d$, Shizhong Wei $^a$, Yan-Bing He $^{e,*}$

$^a$ Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, PR China
$^b$ Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
$^c$ School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, PR China
$^d$ Department of Mechanical Engineering, University of South Florida, Tampa, FL, 33620, USA
$^e$ Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China

Abstract

Transition metal oxides with the Aurivillius structure have been studied as electrode materials in lithium-ion batteries (LIBs) owing to their high capacity and proper redox voltage. With the opened Aurivillius structure, the antimony tungstate (Sb$_2$WO$_6$, SWO) constituted of {Sb$_2$O$_2$}$_{2n^+}$ and {WO$_4$}$^{2n^-}$ is rarely used as negative electrode material for lithium-ion batteries. Herein, the SWO nanosheets/reduced graphene oxide (rGO) hybrid clusters were synthesized, and their electrochemical performances, kinetics and lithium storage mechanism were systematically studied as negative electrode materials for LIBs. Results show that the graphene oxide (GO) not only restricts the growth of layered-structure SWO, but also induces SWO growth along (002) lattice plane and changes SWO particles to SWO nanosheets. The strong interaction between SWO nanosheets and rGO greatly improve conductivity and structure stability of SWO nanosheets/rGO hybrid clusters, which also can efficiently alleviate agglomeration and volume change of SWO nanosheets during cycling. Meanwhile, the dominating pseudocapacitive contribution (78.2% at 0.8 mV s$^{-1}$) effectively enhanced the electrochemical performance. As an anode material for LIBs, the SWO nanosheets/rGO hybrids deliver a high specific capacity of 1141 mAh g$^{-1}$ at a current density of 0.2 A g$^{-1}$, and their specific discharge capacity is 595 mAh g$^{-1}$ after 130 cycles at 0.2 A g$^{-1}$. This work demonstrates that the SWO nanosheets/rGO hybrid clusters are a promising negative electrode material for high-energy-density LIBs.

1. Introduction

Lithium-ion batteries (LIBs) are generally applied in the fields of portable devices, electric cars and smart grids because of high working voltage and long cycle life [1–7]. Although batteries energy density grew very drastically in recent years, it still unable to meet people’s ever-growing demands [5,8–10]. As the most popular negative material for LIBs, graphite has an unsatisfactory theoretical specific capacity (~372 mAh g$^{-1}$). The relative low capacity limits its further developments for high energy density LIBs [11–15][15]. As alternatives of graphite, metal oxides have been intensively studied as anode materials for LIBs because of simple preparation method, economical raw materials, and excellent lithium storage capacity [16–19]. For example, the core-shell nanocomposites of porous TiO$_2$ nanobelts @Sn$_3$O$_4$ nanosheets fabricated by two-step hydrothermal reactions exhibited improved cycling performance [17]. Moreover, multivalent metal oxides with a high electrochemical activity resulting in complex compositions could deliver two to three times higher specific capacity than the graphite [18,19]. Nevertheless, there are still inherent drawbacks...
for metal oxides of inferior conductivity and large volume changes [20]. Many efforts have been undertaken to address these problems [21–23]. For instance, Lee et al. reported WO$_3$/carbon nanofibers synthesized by electrosprun reduction to improve the electrode material conductivity and mechanical stability, exhibiting stable cycling and rate performance [21]. Sun and co-workers synthesized CoFe$_2$O$_4$@CMK-5 composites via nanocasting method, and applied it as anode for LIBs, which exhibited 836 mAh g$^{-1}$ after 100 cycles [22].

As a kind of mixed transition metal oxides, antimony tungstate (Sb$_2$WO$_6$, SWO) has been widely investigated in gas sensors, catalysis, and other fields, on account of its unique layered structure and physicochemical properties [24–26]. Whereas, SWO has rarely been systematically investigated as negative material for LIBs [27,28]. For example, Cruz et al. investigated the lithium insertion in Sb$_2$WO$_6$ with Aurivillius framework [27], and in our previous work, the Sb$_2$WO$_6$ nanosheets have been synthesized and studied as anode materials for LIBs. However, their electrochemical performances were not satisfactory due to their inferior electronic conductivity [28]. In addition, SWO synthesized by simple antimony source and tungsten source displays nanoparticles or micro-nanoparticles in most cases [25,29], which presents severe particle aggregation behaviour. Hence, it is urgent to develop architectural design to effectively relieve SWO nanoparticles aggregation and improve SWO electronic conductivity for an anode material for high-performance LIBs [30].

Herein, SWO nanosheets/reduced graphene oxide (SWO/rGO) hybrid clusters were synthesized by simple solvothermal method and their electrochemical performances, kinetics and lithium storage mechanism for LIBs were systematically investigated. The SWO/rGO clusters structure could efficiently prevent SWO particles agglomeration. Interestingly, it is found that rGO can regulate morphology of SWO which transforms from particles to nanosheets. The interactional oxygenated groups on rGO surface and positive metal ions of SWO precursor restricted growth of SWO and induced SWO growth along its (002) lattice plane to form nanosheets. The nanosheets clusters structure could effectively improve the electronic conductivity for high rate performance. In addition, the strong interaction between rGO and SWO can construct a long-range conductive network. When investigated as negative electrode materials for lithium-ion batteries, optimised SWO/rGO hybrid clusters exhibits a high specific capacity of $\sim$1141 mAh g$^{-1}$ at the current density of 0.2 A g$^{-1}$, and their specific discharge capacity is 577.1 mAh g$^{-1}$ after 150 cycles at 0.2 A g$^{-1}$.

2. Experimental

2.1. Synthesis of SWO/rGO clusters

GO was prepared from graphite powder according to the modified Hummers’ method. The SWO/rGO clusters were synthesized through one-step solvothermal method. Typically, 0.231 g SbCl$_3$ and 0.166 g Na$_2$WO$_4$$\cdot$2H$_2$O were dispersed in 10 mL ethylene glycol (EC), respectively, under vigorous stirring and keeping for 30 min. In addition, 30 mg GO was uniformly dispersed in 10 mL distilled water by ultrasonic agitation for 1 h. Then, the above three solutions were transferred into 50 mL Teflon-lined autoclave and stirred for another 30 min, and heated at 160 °C for 10 h. As a contrast, SWO with different GO additive amounts (0 mg, 20 mg, 40 mg, marked as SWO, SWO/rGO-20, SWO/rGO-40, respectively) were synthesized by the same route.

2.2. Materials characterization

The phase composition and crystal structure of prepared samples were characterized by X-ray diffraction (XRD, Bruker D8 ADVANCE, Cu Kα source). The morphology, energy dispersive X-ray spectroscopy (EDX) and element mapping of prepared materials were investigated by scanning electron microscopy (SEM, JSM-5601LV, JEOL, Akishima, Japan). The microstructure was characterized by transmission electron microscopy (TEM, JSM-2100F, 200 kV, Hitachinaka, Naka, Japan). The rGO contents in SWO/rGO materials were analysised by TGA (Mettler DSC3) in air with the temperature ranging from room temperature to 800 °C at the heating rate of 5 °C min$^{-1}$. Raman spectra were conducted on HORIBA Jobin Yvon LabRAM HR800 using a 532 nm laser as the excitation source to investigate the order degree of carbon in SWO/ rGO-30. The surface area was measured by the Brunauer-Emmett-Teller (BET) method on a micromeritics ASAP2020 nitrogen adsorption-desorption instrument. The X-ray photoelectron spectroscopy (XPS) analysis was taken using an ESCALAB 250Xi (Thermo Fisher) spectrometer employing an Al Kα X-ray source to measure chemical states of elements in products. To investigate the reaction mechanism during insertion/extraction of Lithium-ion in SWO, ex-situ XRD experiments were conducted.

2.3. Electrochemical performance

To examine electrochemical performance of as-prepared samples, SWO/rGO and SWO electrodes were assembled into coin cells (type CR2025). Specifically, the active materials (70 wt%), super P (20 wt%) and the binder polyvinylidene fluoride (PVDF, 10 wt%) were mixed into N-methyl pyrrolidone (NMP) to form a homogeneous slurry by stirring for 8 h. After that, the steady slurry was coated onto conductive copper foil and dried at 80 °C overnight in vacuum oven. The samples were cut into wafers with 12 mm diameter, and the loading mass was about 1 mg cm$^{-2}$. The coin cells with lithium foil as a counter electrode were assembled in a glove box with low water and oxygen content (lower than 1 ppm). During the assembly, 1 M LiPF$_6$ in ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 in volume) was used as the electrolyte, and Celgard 2400 was used as separator. The galvanostatic charge-discharge performance was characterized by the LAND system (CT2001A) at various current densities. Cyclic voltammety tests were taken by using an electrochemical workstation (CHI660C, Chenhua Instrument, Shanghai) ranging 0.01–3.0 V at 0.2–2 mV s$^{-1}$. Electrochemical impedance spectra (EIS) measurements were performed on CHI660C ranging 0.1 Hz to 100 000 Hz.

3. Results and discussion

SWO/rGO composites were synthesized through solvothermal method. As outlined in Scheme 1, the stable Sb$^{3+}$-EG and WO$_3$-EG complexes were formed after SbCl$_3$ and Na$_2$WO$_4$$\cdot$2H$_2$O were uniformly dispersed in EC by reason of the strong coordination between metal ions and EG Ref. [26]. GO was added into mixture before the solvothermal process. As a result, the SWO/rGO clusters were formed by planar-confined growth of oxygenated groups on GO surface and positive metal ions of SWO precursor. To investigate the formation process of SWO/rGO, SWO/rGO-30 with solvothermal time of 0.5 h, 1 h, 2 h, and 6 h were prepared. The corresponding SEM images and XRD pattern are shown in Fig. S1. With the increasing solvothermal time, the morphology of SWO/rGO-30 changed from powdery precursor (Fig. S1a) to spherical particles (Figs. S1b and c), further to layered structure (Figs. S1d and e). With the solvothermal time increasing to 2 h, the product crystalline peaks appeared in XRD pattern (Fig. S1f) and the partial Sb$_2$WO$_6$ rGO changed from amorphous particles to crystalline nanosheets. Finally, after solvothermal reaction for 10 h, the products completely transformed to nanosheets (Fig. 2c).
Fig. 1a shows that XRD patterns of as-synthesized Sb$_2$WO$_6$ and Sb$_2$WO$_6$/rGO samples prepared with various GO addition amounts match well with the standard XRD pattern of Sb$_2$WO$_6$ (JCPDS No. 50-1553) and no impurity could be detected. Moreover, with the increase of GO addition amount, the intensity of (211) peak increases, which may be ascribed to the effect of rGO-induced growth [30,31]. The SWO grows along its (002) lattice plane in SWO/rGO hybrids, which is verified according to XRD pattern in Fig. 1b. The intensity ratios of (002) to (211) peak in SWO, SWO/rGO-20, SWO/rGO-30, SWO/rGO-40 are 1.12, 1.40, 1.46, 1.55, respectively (Fig. S2). Obviously, the intensity of (002) peak increases with the increase of GO addition amount. In addition, compared to the SWO, the (211) peak in the XRD pattern of the SWO/rGO-30 shifts from 27.28° to 25.81° (Fig. 1b), corresponding to the (211) interplanar spacing increasing from 0.3271 nm to 0.3453 nm. The expanded interplanar spacing may be beneficial for ion transportation in SWO/rGO-30 anode. As shown in Fig. 1c, there are three plateaus at 200 °C, 400 °C, and 600 °C in the TGA curve. The weight-loss before 200 °C is attributed to the removal of water [32]. And the weight-loss in the range of 200 °C–400 °C may be attributed to the removal of functional groups of hydroxyl, carbonyl and epoxy groups on rGO surface [33]. And the weight-loss ranging 400 °C–600 °C should be ascribed to the oxidation of rGO [34]. Based on above analysis, the rGO was removed in the range of 200 °C–600 °C, and its weight is calculated to be ~6.86 wt% in SWO/rGO-30 sample after anhydrous. Similarly, the proportions of rGO in SWO/rGO-20 and SWO/rGO-40 were measured to be 5.66% and 8.19% (Fig. S3), respectively. In the Raman spectra of pristine SWO and SWO/rGO-30 (Fig. 1d), the spectra peaks centered at 719, 882, and 1566 cm$^{-1}$ can be assigned to SWO phase. These peaks of the
SWO/rGO have a slight shift, which could be attributed to the interaction of SWO and rGO. Two peaks at ~1343 and ~1587 cm$^{-1}$ are D band and G band in SWO/rGO-30, respectively [35]. The ID/IG ratio of SWO/rGO-30 is about 1.14, indicating the lattice disorder of rGO [35]. And the defective rGO in SWO/rGO-30 may be beneficial for improving the electrochemical properties of SWO/rGO-30. Nitrogen adsorption/desorption isotherms and Barrett-Joyner-Halenda pore size distribution curves of as-synthesized SWO/rGO-30 present that a hysteresis loop in the relative-pressure range of 0.4–1, which is in accordance with the type IV isotherm that is typical for mesoporous materials (Fig. 1e and f). The specific surface area of SWO/rGO-30 is ~59.68 m$^2$ g$^{-1}$. This mesoporous structure is favorable for transportation and storage of lithium-ions [36]. Accordingly, the BET surface and Barrett-Joyner-Halenda (BJH) pore distribution of the pristine SWO was tested, as shown in Fig. S4. The high BET surface of 56.66 m$^2$ g$^{-1}$ in Fig. S3a and dominant mesoporous distribution in Fig. S3b are attributed to nanoscale SWO particles.

SEM images of SWO and SWO/rGO samples with various GO addition amounts are depicted in Fig. 2a–d. The pristine SWO shows submicron particles that composed of smaller particles (Fig. 2a). The SWO/rGO-20 microstructure (Fig. 2b) mainly consists of stacked layer and agglomerated block, indicating that the SWO/rGO with 20 mg GO content could transform SWO particle to SWO sheet to a certain extent. Whereas, the morphology of SWO/rGO-20 is uneven which may be due to low GO content in SWO. Interestingly, SWO/rGO-30 with addition of 30 mg GO has nanosheet-cluster structure with submicron length and about 10 nm thickness (Fig. 2c). Compared with the morphology of SWO/rGO-20, the formation of SWO nanosheets/rGO-30 clusters may be ascribed to the induced effects of GO during growth of SWO. To ensure the optimal GO content, SWO/rGO-40 with 40 mg GO was also synthesized. The morphology of SWO/rGO-40 shows both layered sheets and blocks (Fig. 2d), indicating that the excessive GO content might not effectively induce the SWO growth [37,38]. The TEM image of SWO/rGO-30 shows that layered SWO is uniformly distributed in rGO (Fig. 2e). This architecture could effectively prevent aggregation of SWO nanosheets as well as ensure excellent conductivity of SWO/rGO composite. The HRTEM image shows that the measured interplanar spacing is 0.345 nm (right inset in Fig. 2f), which is in agreement with the (211) plane in the standard card PDF# 50-1553. The selected area electron diffraction (SAED) pattern of SWO/rGO-30 in Fig. 2f displays that the interplanar spacing of the two diffraction rings are about 0.345, 0.269 and 0.19 nm, corresponding to the (211), (310) and (322) lattice plane, respectively. These HRTEM and SAED results confirm formation of crystalline SWO. The low magnification SEM image of SWO/rGO-30 and the corresponding element mapping show uniform distribution of C, O, Sb and W elements, suggesting that SWO is uniformly dispersed in rGO (Fig. S5). In addition, the EDX of SWO/rGO-30 display that the atomic percentage of Sb and W is ~27.9% and ~14%, respectively, which exhibit almost the same Sb/W atomic ratio as Sb$_2$WO$_6$ (Fig. S6). The O, and C element content from EDX in SEM test are 46.63 at% (10.88 wt%) and 11.43 at% (2.01 wt%).
respectively. And the O and C element content from EDX in XPS testing are calculated to be 40.4 at% and 44.5 at%, respectively.

The X-ray photoelectron spectroscopy (XPS) was conducted to investigate the chemical composition and valence-state of SWO/rGO-30 (Fig. 3). SWO/rGO-30 is composed of Sb, W, O, and C elements in Fig. 3a. The C 1s peaks located at 284.8 eV and 286.1 eV could be assigned to C–C and C–OH bonds of rGO, respectively (Fig. 3b) [39]. The binding energy of 530.89 eV and 540.26 eV could be indexed to Sb 3d½ and Sb 3d¾ with 3þ oxidation state (Fig. 3c) [35,40]. High-resolution W 4f XPS spectra mainly consists of W 4f½ and W 4f¾ bands (Fig. 3d), and the two peaks located at 35.64 eV and 38.26 eV correspond to W6þ [41]. In addition, in the high-resolution O 1s spectrum, the three peaks centered at 530.88 eV, 532.06 eV and 533.44 eV could be attributed to C–O, O–C and O= C–O, respectively (Fig. 3f) [39,42]. The high-resolution Sb 3d XPS spectra of SWO depicted two peaks at 530.26 eV and 539.64 eV, respectively (Fig. S7) [39,42]. The high-resolution Sb 3d XPS spectra of SWO/rGO-30 show superior capacity than the pristine SWO, indicating that the introduction of rGO in SWO enhances lithium-ion storage. In addition, it is obvious that the SWO/rGO-30 exhibits higher reversible specific capacity than SWO/rGO-20 and SWO/rGO-40, indicating that the capacity of SWO could effectively enhance rate capability. The SWO/rGO-20, SWO/rGO-30, and SWO/rGO-40 electrodes could deliver discharge capacity of 246.4 mAh g⁻¹, 577.1 mAh g⁻¹, and 502.9 mAh g⁻¹ after 150 cycles at 0.2 A g⁻¹, respectively (Fig. 4d). In contrast, the pristine SWO electrode only delivers 212.5 mAh g⁻¹ after 150 cycles and coulombic efficiencies of SWO and SWO/rGO with different GO contents electrodes during cycles at 0.2 A g⁻¹ are shown in Fig. 4d, after the first cycle, the coulombic efficiencies gradually grew to ~98%, indicating their decent lithium-ion storage reversibility. Moreover, compared with other Sb-based oxides and sulfides, as shown in Table S1, electrochemical performance of SWO/rGO-30 are in comparison with that of recent reported Sb-based oxides and sulfides. Specifically, the capacity of SWO/rGO-30 in this work at 2 A g⁻¹ is superior to most Sb-based oxides and sulfides, indicating the excellent conductivity for SWO/rGO hybrid clusters. The SWO/rGO-30 shows favorable cycling performance, but its cycling capacity could be enhanced by robust host. The improved rate and cycling performance of SWO/rGO-30 can be ascribed to following reasons: Firstly, the introduction of rGO could induce SWO growth.
from particles to nanosheets and SWO nanosheets/rGO clusters could provide more lithium storage sites and exhibit faster ion transport [50]. Secondly, rGO in SWO/rGO could improve conductivity and efficiently prevent active materials agglomeration. The qualitative electrochemical kinetics of SWO and SWO with different GO contents electrodes were evaluated by electrochemical impedance spectroscopy (Fig. 4e and f). With increasing rGO content, the charge transfer resistance ($R_{ct}$) of SWO/rGO before cycling gradually decrease due to excellent rGO conductivity [Fig. 4e] [51]. After 150 cycles, the corresponding $R_{ct}$ universally decreased, which could be ascribed to material being activated during cycles. SWO/rGO-30 exhibits the lowest resistance, and the improved electrochemical kinetics of SWO/rGO-30 could mainly result from proper rGO amount whose SWO nanosheets/rGO clusters structure benefits fast lithium-ion transportation.

The surface morphology of SWO and SWO/rGO-30 electrodes before and after 150 cycles at 0.2 A g$^{-1}$ are shown in Figs. S9a–d. SWO and SWO/rGO-30 electrodes before cycling exhibit flat surfaces (Figs. S9a and S9c). After cycles, large cracks are found in SWO electrode (Fig. S9b), which visually indicates the inferior mechanical stability. In sharp contrast, SWO/rGO-30 electrode after 150 cycles exhibits quite compact surface without large cracks (Fig. S9d). The intact surface morphology of SWO/rGO-30 electrode demonstrates excellent mechanical stability and less active material loss.

To further investigate the kinetics process of SWO/rGO-30 electrode, cyclic voltammetry of SWO/rGO-30 electrode were conducted at various scan rates ranging from 0.2 mV s$^{-1}$ to 2 mV s$^{-1}$ (Fig. 5a). The locations of peaks at anodic scanning and cathodic scanning have slightly orientated migration with the scan rate increases. The pseudocapacitive effect could be analyzed through Equations (1) and (2) [52].

$$i(V) = a V^b = k_1 v + k_2 v^{0.5}$$ (1)

$$\log i(V) = b \log v + \log a$$ (2)

where $i$ is the current response in CV, $V$ is the voltage value in operating voltage window, $k_1$, $k_2$ and $a$ are constants, and $v$ is the scan rate. Based on the peak current, $b$ values of Peak$_k$ and Peak$_a$ at various scan rates were calculated to be 0.73 and 0.87, respectively. These values mean that surface-induced capacitive would be a dominator in SWO/rGO-30 electrode charge storage system (Fig. 5b). Furthermore, the pseudocapacitive contribution proportion can be determined based on Equations (1) and (3) [52,53].

$$i(V) \int v^{0.5} = k_1 v^{0.5} + k_2$$ (3)

Here, the total current response ($i$) at a fixed potential ($V$) can be separated into two mechanisms. The part of $k_1 v$ is the surface-
induced capacitive current. The diffusion-controlled current is reflected in $k_d v^{0.5}$ [53]. Fig. 5c indicates that 78.2% of total charge comes from capacitive contribution at a scan rate of 0.8 mV s$^{-1}$ for in SWO/rGO-30. The region is almost pseudocapacitive controlled, which is in accordance with the result of b-value [52]. This obviously implies that mesoporous SWO/rGO-30 nanosheets offer many active surface sites, short lithium ion diffusion pathway as well as good electrolyte accessibility to all the electroactive surfaces, resulting in the excellent electrochemical performance. Moreover, with the scan rate increases, the higher pseudocapacitive contribution percentage, which could ensure excellent rate capacity of SWO/rGO-30 electrode at high current density (Fig. 5d).

Fig. S10a displays CV curves of SWO at various scan rates. According to CV curves of SWO (Fig. S10a) and SWO/rGO-30 (Fig. 5a), the Li-ion diffusion coefficient ($D_{Li}$) can be calculated based on the equation: $I_p = 2.69 \times 10^5 A C n^{1/2} v^{1/2}$ [54]. Here, $I_p$ is the peak current (A), $A$ represents the anode area (cm$^2$), $C$ stands for the shuttle concentration (mol cm$^{-3}$), $n$ is the number of the involved electrons, $v$ is the scan rate (V s$^{-1}$), and $D_{Li}$ is the diffusion coefficient. Obviously, the $D_{Li}$ is proportional to the ratio of $I_p$ vs $v^{1/2}$. Interestingly, in Fig. S10b, the relationship of $I_p$ vs $v^{1/2}$ is commendably linear, which demonstrates that the electrode reaction is controlled by Li-ion diffusion. As for the slope of $I_p$ vs $v^{1/2}$, it is obvious that the slope of SWO/rGO-30 (0.06603) is higher than the one of the pristine SWO (0.01721). This further demonstrates higher ionic conductivity in SWO/rGO-30 than that in SWO. Based on the above-mentioned formula, the Li-ion diffusion coefficient of SWO/rGO-30 is about $5.3 \times 10^{-9}$ cm$^2$ s$^{-1}$. The favorable diffusion coefficient of SWO/rGO-30 results in excellent electrochemical performance.

To investigate the reaction mechanism of the SWO/rGO-30 electrode during lithium-ion insertion/extraction, the ex-situ XRD was performed during charge/discharge at 0.1 A g$^{-1}$ in 0.01–3V (Fig. 5e and f). As shown in Fig. 5f, when the pristine electrode was discharged to 1.6 V, the crystallization intensity of SWO/rGO-30 enhanced and the Li$_2$O appeared at 33.56$^\circ$. The peaks at 43.38$^\circ$ and 50.46$^\circ$ are assigned to the copper current collector. When the SWO/rGO-30 was discharged to 0.01 V, the Li$_3$Sb and WO$_3$ appeared at 30.08$^\circ$ and 36.97$^\circ$ [55], respectively. This result indicates the conversion reaction and alloy reaction of SWO in LIBs. When the SWO/rGO-30 was charged to 0.8 V, the intensity of corresponding XRD peaks of Li$_3$Sb and Li$_2$O decreased, indicating the lithium ions extraction. The peaks of Li$_3$Sb, Li$_2$O and WO$_3$ disappeared completely when the electrode was charged to 3 V. This result
demonstrates the reversible lithium-ion insertion/extraction in SWO/rGO-30. Based on above results, the reaction mechanism of SWO in LIBs could be expressed as follows:

\[ \text{Li}_x\text{Sb}_2\text{WO}_6 + x\text{Li}^+ + x\text{e}^- \rightarrow \text{Li}_x\text{Sb}_3\text{WO}_6 \]  

(4)

\[ \text{Li}_x\text{Sb}_2\text{WO}_6 + (12 - x)\text{Li}^+ + 2x\text{Li}^+ + \text{WO}_3 + 3\text{Li}_2\text{O} \]  

(5)

4. Conclusion

In summary, SWO nanosheets/rGO clusters have been successfully prepared based on GO inducing SWO growth by the interacted oxygenated groups on GO surface and SWO, and their electrochemical performances as the anode materials in LIBs were systematically investigated. The proper GO content can provide adequate oxygenated groups without GO restacking and transform SWO from particles into nanosheets. In addition, the reliable links between rGO and SWO nanosheets lead to enhanced electronic conductivity and ionic conductivity. The SWO nanosheets/rGO clusters can effectively prevent the aggregation of SWO nanosheets and provide stable active sites and relieve volume changes during cycling. The SWO/rGO-30 clusters exhibit superior rate and cycle performance. When the current density is 2 A g⁻¹, the SWO/rGO-30 clusters could still deliver the discharge specific capacity of 545.2 mAh g⁻¹. Overall, the SWO/rGO-30 clusters could be used as a promising negative electrode material for high-energy-density LIBs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement


Acknowledgements

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R21), the Chinese 02 Special Fund (2017ZX02408003), the Scientific and Technological Project of Henan Province (182102210297), Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials (HKDMN201807), the Student Research Training Plan of Henan University of Science and Technology (2019031), and Shenzhen Technical Plan Project (Nos. JCYJ20170412170706047 and JCYJ20180508152135822). This work was also supported by Shenzhen Graphene Manufacturing Innovation Center (No. 20190161513).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jallcom.2020.155614.


JJ. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, et al., Template-free synthesis of SbS2 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries, Nano-Micro Lett. 10 (2018) 1701651.


