
Physics Letters A 381 (2017) 1568–1572
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Edge eigen-stress and eigen-displacement of armchair molybdenum 

disulfide nanoribbons

Quan Wu a, Xi Li a, Alex A. Volinsky b, Yanjing Su a,∗
a Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, China
b Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2016
Received in revised form 23 February 2017
Accepted 6 March 2017
Available online 9 March 2017
Communicated by R. Wu

Keywords:
MoS2 nanoribbons
Size-dependent
Young’s modulus
Poisson’s ratio

Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated 
using first principles calculations. The edge eigen-stress model was applied to explain the relaxation 
process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree 
were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair 
molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based 
on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests 
were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young’s modulus and 
Poisson’s ratio.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Molybdenum disulfide (MoS2) belongs to two-dimensional (2D) 
transition metal dichalcogenides [1]. Single layer MoS2 is con-
structed by graphene-like hexagonal arrangement of Mo and S 
atoms stacked together to form S–Mo–S sandwiches. Recently, sin-
gle layer MoS2 captured researchers’ interest due to its prominent 
mechanical [2–4], electronic [5], thermal [6], and optoelectronic [7]
properties.

MoS2 nanoribbons (MoS2 NRs) are MoS2 strips with ultra-
narrow width, obtained using electrochemical methods [8]. Based 
on their edge configuration, MoS2 NRs are classified as armchair 
MoS2 nanoribbons (AMoS2 NRs) and zigzag MoS2 nanoribbons 
(ZMoS2 NRs). For armchair graphene ribbons (AGNRs), unique me-
chanical properties were found where AGNRs exhibited three pe-
riodicities in the nominal Young’s modulus and Poisson’s ratio 
[25]. Considering their band gap [9], intrinsic carrier mobility [10]
and binding energy [11], AMoS2 NRs exhibit oscillating width-
dependent behavior. The authors wanted to figure out whether 
AMoS2Rs exhibit three periodicities in the nominal Young’s mod-
ulus and Poisson’s ratio, and further investigate the reasons. The 
elastic modulus [10–12], edge energy density [13,14] and edge 
stress [13,15] have been obtained for MoS2 NRs considered as 2D 
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structures, i.e., without taking into account the influence of MoS2

NRs thickness. However, the thickness of MoS2 NRs varies with the 
width change. Hence, it is important to accurately determine the 
edge properties by taking into consideration the thickness change. 
Intrinsic edge parameters effects on mechanical properties, sur-
face atoms fluctuation degree, edge eigen-stress and Poisson’s ratio 
need to be investigated.

By taking the stress-free monolayer MoS2 sheet as a reference, 
an AMoS2 NR can be created from it. A newly formed AMoS2 NR, 
with the lattice constant of the stress-free monolayer MoS2 sheet, 
has substantially higher excess energy, and the free-edges (S–Mo–S 
sandwich structure) of the AMoS2 NR are formed with eigen-stress 
[16]. The newly formed AMoS2 NR relaxes unavoidably to reduce 
the excess energy and the edge eigen-stress. This relaxation causes 
initial deformation and relaxation-induced strain in the AMoS2 NR 
along the length and thickness directions.

In the present study, AMoS2 NRs were allowed to relax in 
two steps of normal relaxation and parallel relaxation, so that the 
change in the excess energy could be systematically studied. The 
surface atoms fluctuation degree was obtained from the changes of 
atomic positions at two layers of sulfur atoms. Perimeters of each 
hexagon ring in the relaxed AMoS2 NRs are given to investigate the 
structure change. The nominal Young’s modulus and Poisson’s ratio 
were determined by performing tensile/compressive tests on the 
relaxed AMoS2 NRs to extract the edge eigen-stress, edge Young’s 
modulus and Poisson’s ratio.
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Fig. 1. The calculated geometry of the AMoS2 NRs.

2. Computational methods

Density functional theory (DFT) calculations were performed by 
using the Vienna ab initio simulation package (VASP) [17] with the 
project-augmented wave (PAW) method [18]. The exchange corre-
lation interaction was treated by the generalized gradient approx-
imation with the PW91 functional [19]. The PAW potentials were 
used with the 4p65s14d5 valence states of molybdenum atoms and 
the 3s23p4 valence states of sulfur atoms. The 11 × 11 × 1 and 
1 × 11 × 1 Monkhorst–Pack [20] k-points were set for the mono-
layer MoS2 and AMoS2 NRs, respectively, with an energy cut-off of 
550 eV. The accuracy of the total energy calculations was on the 
order of 0.1 meV.

The equilibrium configuration of the monolayer MoS2 was de-
termined by energy minimization. The spacing of the nearest Mo–
Mo was 3.197 Å, the bond length of the Mo–S bond was 2.421 Å, 
while the distance between the top and bottom layers in single 
layer MoS2 was 3.132 Å, in good agreement with previous reports 
[21,22]. When an AMoS2 NR is removed from its stress-free parent 
sheet, it has original dimensions of L0 × W0 × T0, where L0, W0
and T0 represent the length, width and thickness of the AMoS2
NR without any relaxation, respectively. The unrelaxed AMoS2 NRs 
width W0 was determined by using the equal mass method [23], 
i.e., the total mass of the atoms in the AMoS2 NR was set equal 
to the product of the monolayer MoS2 density and the volume 
of the simulated representative nanoribbon in its undistorted con-
figuration. The number of atoms across the ribbon width index 
Nw was adopted to represent the width in this study, and the 
calculated AMoS2 NR width ranged from 1.3 nm to 2.4 nm. The 
unrelaxed AMoS2 NRs thickness T0 was equal to the thickness of 
the MoS2 monolayer, assumed to be 0.65 nm [3]. Fig. 1 shows that 
the structure was treated with periodic boundary conditions along 
the AMoS2 NR length. To eliminate the interaction between AMoS2
NRs, the calculated structure contained two 20 Å thick vacuum lay-
ers along the width and thickness directions.

3. Theoretical analysis

The relaxation process of AMoS2 NR was separated into normal 
and parallel relaxations [16,25]. In the normal relaxation, all of the 
atoms were allowed to move in width and thickness directions, 
whereas in parallel relaxation, all of the atoms were allowed to 
move in all three directions.
The dimensions changes to Lini × W ini × T ini with Lini = L0 +�L, 
W ini = W0 + 2p0 + �W and T ini = T0 + �T , where p0 is the edge 
eigen-displacement [22] and the change of width �W and thick-
ness �T are caused by the Poisson’s ratio effect. Relaxation causes 
initial deformation, and the relaxation-induced strain along the 
AMoS2 NRs length and thickness directions are called the initial 
strain. The initial strain along the length and thickness directions 
is calculated as εini

L = (Lini − L0)/L0 and εini
T = (T ini − T0)/T0.

In equilibrium, zero total force along the length direction must 
be satisfied along any lateral section perpendicular to the length, 
and the traction-free boundary conditions must be met along the 
AMoS2 NR edges. The initial edge stress and core stress after par-
allel relaxation were calculated as σ ini

e = σ ini
0 + Yeε

ini
L and σ ini

c =
Ycε

ini
L , respectively. The self-balanced force requires

2F ini
e + F ini

c = 0 (1)

where F ini
e = T iniσ ini

e = T ini(σ ini
0 + Yeε

ini
L ) and F ini

c = W iniT iniYcε
ini
L

denotes the edge force and the core force, which includes the sur-
face force of the two surfaces (S atomic layer) and the core force 
(Mo atomic layer) per unit length, respectively.

4. Results and discussion

Fig. 2(b) shows that the initial strain along the length direction 
increases as the width increases, whereas the initial strain along 
the thickness direction decreases with the width. As the dimen-
sions change, the structures also change.

The edge effect on surface atoms fluctuation degree Ra of each 
fully relaxed AMoS2 NR with different width was proposed to re-
flect the fluctuations of sulfur atomic layers at zero temperature. 
It was calculated using Ra = 1

ns

∑nS /2
i=1 [|Z NR

top − Z sheet
top | + |Z NR

bottom −
Z sheet

bottom|], where ns is the total number of sulfur atoms in AMoS2

NRs, Z NR
top, Z NR

bottom, Z sheet
top and Z sheet

bottom denote the sulfur atomic co-
ordinate value along the thickness direction of the AMoS2 NR’s 
top-layer, AMoS2 NR’s bottom-layer, sheet’s top-layer, and sheet’s 
bottom-layer, respectively. Fig. 2(a) shows that the AMoS2 NR sur-
face atoms fluctuation degree increases as the width decreases. 
In this case, the change of thickness �T is determined by �T =
dNR

S–S − dsheet
S–S in consideration of the uneven surface, where dNR

S–S

and dsheet
S–S denote the arithmetic mean distance between the top 

layer and the bottom layer in AMoS2 NRs and stress-free MoS2
parent sheet, respectively.

The latest study [25] shows that the armchair graphene nano-
ribbons (AG NRs) with similar honeycomb-like structure to AMoS2
NRs exhibit three periodicities in the nominal Young’s modulus 
and Poisson’s ratio. Investigations of the Young’s modulus and Pois-
son’s ratio of AMoS2 NRs are reported later in the paper. The phe-
nomenon of the width-dependent elastic properties and perimeter 
patterns with a periodicity of three depends on the nature of the 
edge, which can be explained by the Clar sextets [26]. The Clar 
sextets defined as six π -electrons localized in a single hexagons 
ring separated from adjacent rings by the C–C single bonds. Corre-
sponding relationships were found between the hexagon perime-
ters pattern and the Clar sextets in AG NRs [26]. Without the Clar 
sextets, AMoS2 NRs exhibit different hexagon perimeters pattern. 
Fig. 3 shows the hexagon “perimeters” (six sides are not in the 
same plane) of each relaxed AMoS2 NRs with width Nw ranging 
from 8 to 15. In contrast to the AG NRs, the perimeter patterns of 
the AMoS2 NRs show different variation rules. For the AMoS2 NRs 
with 3n + 1 and 3n − 1 width, no obvious arrangement rule was 
observed. According to the structural symmetry, AMoS2 NRs were 
classified by central (Nw = 2k) and mirror (Nw = 2k + 1) symme-
try. As the width increases, the value of the hexagonal perimeter 
approaches the infinite MoS2 sheet value.
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Fig. 2. (a) The surface atoms fluctuation degree; (b) the initial strain; (c) 3D and (d) 2D edge energy densities of AMoS2 NRs as functions of the width index.
The infinite MoS2 sheets and MoS2 NRs are usually treated as a 
2D structure to extract their mechanical parameters [3]. However, 
Fig. 2(b) indicted that around 0.03–0.05% tensile strain forms in 
the thickness direction of the AMoS2 NRs during relaxation and 
deformation, and changes with the width. Hence, AMoS2 NR is 
treated as a composite of a geometrical 3D core and two 2D edges 
to extract its energy change during relaxation, and its mechanical 
parameters, such as eigen-stress, Young’s modulus and Poisson’s 
ratio.

The energy of an AMoS2 NR without relaxation is calculated 
from Eunr = E0 + Eunr

exc , where E0 and Eunr
exc represent the reference 

energy of the stress-free monolayer MoS2 sheet and the unre-
laxed excess energy, respectively. Eunr

exc includes two parts: chem-
ical energy formed due to broken chemical bonds of the edge 
atoms during the formation of the two nanoribbon edges, and 
the strain energy of the thickness formed due to transformation 
from the edge atoms. Thus, the unrelaxed edge energy density 
is given by ρunr = Eunr

exc /(2L0T unr
0 ), where T unr

0 denotes the thick-
ness of the AMoS2 NRs, which changes with the AMoS2 NRs 
width. After normal relaxation, the potential energy decreases from 
Eunrto E⊥r = E0 + E⊥r

exc , where E⊥r
exc denotes the excess energy af-

ter normal relaxation, and the edge energy density decreases to 
ρ⊥ = E⊥r

exc/(2L0T ⊥
0 ). Parallel relaxation further reduces potential 

energy to Eini = E0 + Eini
exc(e+c) , where Eini

exc(e+c) denotes the total ex-
cess energy relative to the stress-free monolayer MoS2 sheet. Due 
to the initial deformation, the total excess energy Eini

exc(e+c) con-

tains two parts: the core strain energy Eini
exc(c) , which is equivalent 

to the strain energy of the sheet counterpart by the relaxation-
induced initial deformation and the excess energy attributed to the 
edge Eini

exc(e) . The core strain energy Eini
c is determined as Eini

exc(c) =
(LiniW iniT ini)Y C

3D(εini
L )2, where εini

L denotes the initial strain of the 
cores along the length and Y C

3D denotes the 3D bulk Young’s mod-
ulus. Hence, the edge energy density ρ ini

(e+c) is calculated from 
ρ ini = Eini /(2LiniT ini) and the edge energy density ρ ini can 
(e+c) exc(e+c)
Fig. 3. Hexagon perimeters of each of AMoS2 NRs with width N ranging from 8 
to 15.

be obtained as ρ ini = Eini
exc(e)/(2LiniT ini). This indicates that under 

the fully relaxed state in Fig. 2(c), the edge energy density is al-
most constant when the width index N > 8, and slightly lower 
than the excess energy density. If the AMoS2 NR is treated as a 2D 
structure, the corresponding edge energy density above can be de-
fined as γ unr = Eunr

exc /2L0, γ ⊥ = E⊥r
exc/2L0, γ ini

(e+c) = Eini
exc(e+c)/2Lini , 

and γ ini = Eini
exc(e)/2Lini , respectively. This indicates in Fig. 2(d) that 

γ unr and γ ⊥ increase and γ ini
(e+c) decreases with the thickness if 

the change of the AMoS2 NR thickness during relaxation and de-
formation is not taken into account. The 2D edge energy density 
γ ini is almost constant with the increase of the AMoS2 NRs width.

The simulated uniaxial compression/tensile tests were con-
ducted on the relaxed AMoS2 NRs and monolayer MoS2 sheet. 
A range of 0% to 1% (−1%) uniaxial strain was implemented to 
adjust the periodic length L with an increment (or decrement) 
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Table 1
Core and edge Young’s modulus, width and thickness directional Poisson’s ratio, and eigen-stress of AMoS2 NRs.

Young’s modulus Poisson’s ratio (width) Poisson’s ratio (thickness) Eigen-stress

Core Edge Core Edge Core Edge

3D 187.29 GPa −29.61 N/m 0.25 0.75 Å 0.11 −0.32 Å 0.71 N/m
2D 121.74 N/m −19.22 nN 0.25 0.75 Å 0.46 nN
Fig. 4. (a) The uniaxial Young’s modulus and (b) Poisson’s ratio of the AMoS2 NRs 
versus width.

of 0.2%. After each increment (or decrement), energy minimiza-
tion was conducted to ensure that the simulated system reached 
a new equilibrium state. Considering the change of thickness, 
the 3D nominal Young’s moduli of the sheet Y sheet

3D and nanorib-
bons Y ∗

3D were determined as �U/(L0W0T0) = Y sheet
3D (εL)

2/2 and 
�U/(LiniW iniT ini) = Y ∗

3D(εL)
2/2, respectively, where �U is the 

strain energy of the nanoribbon and εL is the applied uniaxial 
strain. The 2D nominal Young’s moduli of the sheet Y sheet

2D and 
nanoribbons Y ∗

2D can be obtained as Y sheet
2D = T0Y sheet

3D and Y ∗
2D =

T iniY ∗
3D , respectively. The 3D and 2D Young’s moduli of an infinite 

MoS2 sheet and nanoribbons are listed in Table 1, and are consis-
tent with the experimentally measured values [2,3].

Fig. 4(a) shows the 3D and 2D nominal uniaxial Young’s mod-
ulus versus the ribbon width. The nominal Young’s modulus of 
AMoS2 NRs exhibits width-dependent behavior, i.e., larger width 
corresponds to higher nominal Young’s modulus. The nominal uni-
axial Young’s modulus is expressed as

Y ∗
3D = Y c

3D + 2Y e
3D

W
(2)

Y ∗
2D = Y c

2D + 2Y e
2D

W
(3)

Both the 3D and 2D edge Young’s moduli were calculated by 
fitting the nominal Young’s modulus to the width of the AMoS2
NRs, and the value of the core Young’s modulus is equal to that 
of the MoS2 sheet, as listed in Table 1. The negative edge Young’s 
modulus suggests that the nominal uniaxial Young’s modulus is 
lower than the core Young’s modulus.
When uniaxial strain ε//
L is applied along the length direction, 

there is a strain ε⊥
W along the width direction and ε⊥

T along the 
thickness direction. The perpendicular strains ε⊥

W and ε⊥
T were 

available in the simulations, enabling the determination of the 
width direction nominal Poisson’s ratio v∗

W = −ε⊥
W /ε

//
L and the 

thickness direction nominal Poisson’s ratio v∗
T = −ε⊥

T /ε
//
L , for each 

AMoS2 NR. Fig. 4(b) shows both the width and thickness directions 
nominal Poisson’s ratio versus the width, indicating that the width 
direction nominal Poisson’s ratio decreased as the width increased, 
and the thickness direction nominal Poisson’s ratio increased as 
the width increased. Following the edge eigen-displacement model 
[24] the nominal Poisson’s ratios were expressed as

v∗
W = vc

W + 2ve
W

W
(4)

v∗
T = vc

T + 2ve
T

W
(5)

where vc
W , ve

W and ve
T are the core, width edge and thickness edge 

Poisson’s ratios, respectively. The edge Poisson’s ratios, which rep-
resent the excess Poisson’s ratio induced by the presence of an 
edge, are listed in Table 1. The positive value for the width di-
rection Poisson’s ratio suggests that the nominal Poisson’s ratio 
decreased as the width increased and was larger than the mono-
layer sheet width direction Poisson’s ratio. The negative value for 
the thickness direction Poisson’s ratio suggests that the nominal 
Poisson’s ratio increased with the width and was smaller than 
the monolayer sheet thickness direction Poisson’s ratio. Periodi-
cally modulated width-dependent Young’s modulus and Poisson’s 
ratio of AMoS2 NRs were not observed. The results show that the 
phenomenon of the width-dependent elastic properties with peri-
odicity of three depends on the nature of the edge, which is not 
mainly caused by the unique honeycomb-like structure in arm-
chair ribbons. Compared with the AG NRs, calculation results in 
this study indicate that the Clar sextets play the key role in the 
periodically modulated width-dependent behavior.

From Equation (2), (3) and using Equation (1), the length di-
rectional initial strain is treated as a function of the width, which 
takes the form

εini
3D = −2σ ini

0−3D

W
(
Y c

3D + 2Y c
3D

W

) = −2σ ini
0−3D

W Y ∗
3D

(6)

εini
2D = −2σ ini

0−2D

W
(
Y c

2D + 2Y c
2D

W

) = −2σ ini
0−2D

W Y ∗
2D

(7)

The 3D and 2D edge eigen-stresses, listed in Table 1, were de-
termined by fitting the calculated initial strain versus the recipro-
cal of the product of the width and the nominal Young’s modulus. 
The positive edge eigen-stress suggests that the edges of AMoS2
NRs are stretched when constructed with the monolayer MoS2
sheet lattice constant without any deformation. To release the ten-
sile edge eigen-stress, compressive initial strains must be induced 
during relaxation.

5. Conclusions

In conclusion, energies and mechanical properties of the AMoS2
NR with bare edges dimensions changed after normal relaxation 
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and parallel relaxation. As the width increased, the initial strain 
along the length increased, and the initial strain along the thick-
ness, the surface atoms fluctuation degree and the edge en-
ergy density of the relaxed AMoS2 NRs decreased. The struc-
ture change of the relaxed AMoS2 NRs with bare edges was ex-
pressed by the perimeter patterns, which were divided into two 
periodic groups. Tensile/compressive tests were conducted on the 
relaxed AMoS2 NRs to determine the nominal elastic constants. 
Nominal Young’s modulus and nominal Poisson’s ratio also illus-
trated width-dependent behavior, i.e., larger width corresponded 
to higher nominal Young’s modulus, higher nominal Poisson’s ra-
tio along the thickness direction, and smaller nominal Poisson’s 
ratio along the width. The edge Young’s modulus and Poisson’s 
ratio were calculated based on the edge eigen-stress and eigen-
displacement models. The results obtained herein are helpful to 
aid MoS2 nanoribbons-based devices design.
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