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a b s t r a c t

Polydimethylsiloxane (PDMS) is one of the widely-used silicone-based organic polymers. It can serve as a
substrate to grow cells, mainly because of its controllable range of mechanical properties. Varying the
degree of crosslinking in the polymer network allows tuning its mechanical properties in a range similar
to living tissues. To study the PDMS stiffness effect on the growth and behavior of cells, it is of significant
importance to explore the mechanical properties of a series of PDMS samples cured to different crosslink
densities. In this paper, nanoindentation tests were conducted using spherical, Berkovich, cube corner
and conical indenters to characterize PDMS mechanical properties. To interpret the nanoindentation
data, the nano-JKR force curve method was successfully extended to include Berkovich, cube corner and
conical indenters by conducting a numerical simulation in which the adhesive interactions are repre-
sented by an interaction potential and the surface deformations are coupled by using half-space Green's
functions discretized on the surface.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, polydimethylsiloxane (PDMS) has been
extensively employed for the fabrication of microdevices used as
cell culture platforms [1e3]. The PDMS substrate possesses uni-
versal appeal over other materials because of its unique properties,
such as biocompatibility, thermal stability, chemical inertness,
optical transparency, gas permeability, lack of toxicity, low cost and
easy fabrication into various shapes and sizes [4e7]. Most impor-
tantly, PDMS mechanical properties can be controlled by changing
the weight percentage of the crosslinker, curing time and curing
temperature [8,9]. All of these physical attributes make PDMS an
ideal platform for cell-on-a-chip technology, particularly for drug
discovery in microfluidic chips and microwell plates [10e13].

To investigate the PDMS stiffness effect on the growth and
behavior of cells, it is of significant importance to explore the me-
chanical properties of a series of PDMS samples cured to different
crosslink densities. However, characterizing mechanical properties
of PDMS is a challenging task, as there are multiple chemical and
physical factors that can affect the mechanical properties of PDMS
and limit our ability to measure these properties [14e16]. For
example, Liu et al. demonstrated that both the mechanical strength
and the Young's modulus of the PDMS membranes are thickness
dependent [14]; Khanafer et al. found that the elastic modulus of
PDMS increases with increasing strain rate [15]; and Wang et al.
fabricated PDMS sheets with continuous stiffness gradients to
study the effects of substrate stiffness on stem cell differentiation,
thus rendering them non-uniform and unsuitable for macroscale
tests [16]. While most researchers resorted to tensile testing using
standard testing equipment [3,14,15,17], Wang et al. utilized a
custom-built macroscopic compression instrument for measuring
macroscopic elastic properties of PDMS samples with 5:1 to 33:1
elastomer base to the curing agent ratios [18]. However, nano-
indentation is capable of providing better surface sensitivity and
higher spatial resolution.

Although traditional nanoindentation techniques were devel-
oped for stiff materials, such as metals and ceramics, nano-
indentation testing of compliant materials, such as soft tissues, cells
and hydrogels, has recently attracted substantial attention because
the high spatial resolution of nanoindentation allows local testing
of mechanical properties of soft matter that is not possible using
macroscale techniques [19e25]. However, the interpretation of the
measured load-displacement profiles fromnanoindentation testing
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on soft materials has been a complex issue. One of the key concerns
is the significant effect of adhesion between the indenter tip and
the sample. Adhesion leads to larger contact areas and higher
contact stiffness for a given applied force relative to the Hertz
model [26], which results in an overestimation of modulus values if
the experimental data is analysed by the traditional OliverePharr
method implemented by most commercial software packages [27].

Ebenstein and Wahl sought to extract accurate modulus values
from nanoindentation data by proposing a method based on the
JohnsoneKendalleRoberts (JKR) model, which is now often
referred to as the nano-JKR force curve method [23,28]. Unlike the
OliverePharr method, the nano-JKR force curve method seeks to fit
indentation data with models that take the effect of adhesion into
account. Although this approach has demonstrated its capability to
correct for errors due to adhesion [23,28], to our knowledge, it has
not been widely adopted, mainly because it works only with
perfectly spherical tips, has not been validated on a wide range of
materials, and has not been implemented in commercial software.
In this paper, nanoindentation tests were conducted using spher-
ical, Berkovich, cube corner and conical indenters to characterize
the mechanical properties of a series of PDMS samples cured to
different crosslink densities. To interpret the nanoindentation data,
the nano-JKR force curve method was successfully extended to
include Berkovich, cube corner and conical indenters by conducting
a numerical simulation in which the adhesive interactions are
represented by an interaction potential and the surface de-
formations are coupled by using half-space Green's functions dis-
cretized on the surface. The elastic modulus results of all the tested
PDMS samples are compared with the results reported by a pre-
vious study using a custom-built macroscopic compression tester
[18].
2. Experimental work

PDMS was purchased from Dow Corning Corporation as a kit of
two components (Sylgard 184, Dow Corning Corporation, Midland,
MI), prepolymer base and crosslinker. The components were mixed
and cured to form the elastomer network. Eight different PDMS
base to elastomer weight ratios were tested, 5:1, 7:1, 10:1, 16.7:1,
20:1, 25:1, 30:1 and 33:1. It was manually mixed for 15 min for the
higher crosslinker amounts and 30 min for the lower crosslinker
amounts. All PDMS mixtures were degassed using a vacuum pump,
and then poured into clean polystyrene Petri dishes. All the samples
were about 1e2mm thick. They were cured at 65 �C for 20e24 h. To
accommodate the nanoindentation workspace, the prepared PDMS
sheets were cut into 1 cm square pads with a utility knife. Instead of
the typical glue mounting of the sample, it was placed directly onto
the Hysitron Triboindenter stage and pressed with tweezers to
develop full contact with the stage, evident by the air escaping
along the interface between the sample and the steel sample stage
holder.

Indentation was performed using a Hysitron TI-950 Tri-
boIndenter (Hysitron, Inc., Minneapolis, MN) equipped with
commercially available diamond tips (Hysitron, Inc., Minneapolis,
MN). Four different tip geometries were used for testing: a 74.4 mm
radius spherical tip, a Berkovich tip, a cube corner tip, and a conical
tip with 90� conical angle. All indents captured full force curves in
displacement control. The indenter first detected the surface with a
setpoint force of 2 mN, then lifted off from the surface at a rate
of�150 nm/s to a height of 1800 nm above the surface, well outside
the adhesive interaction zone, and finally indented the sample at a
constant displacement rate of 60 nm/s to the maximum depth. At
least five tests were conducted for each combination of indenter
type and PDMS stiffness.
3. Numerical simulation

Since no analytical solution exists for the force-displacement
relationship for Berkovich, cube corner, or conical indenters, in
this section, numerical simulations will be conducted based on the
governing equations of adhesive contact problems involving non-
spherical shapes. For surface atomic interaction, the empirical po-
tential used here is the Lennard-Jones potential [29]. Hence, one
can obtain the relationship between the local pressure p and the air
gap h as follows [30]:

pðhÞ ¼ 8Wad

3ε

h
ðε=hÞ9 � ðε=hÞ3

i
(1)

whereWad is the work of adhesion, the tensile force integrated over
the distance necessary to pull apart the two bodies, and ε is a length
parameter equal to the range of the surface interaction. Derjaguin's approx-
imation [31] is then applied to Eqn. (1). The separation between the
two surfaces due to the surface interaction as well as the applied
load, denoted by h, will be expressed by the following equation
[31]:

hðx; yÞ ¼ �aþ εþ h0 þ
1

pE*
∬
U

pðx0; y0Þdx0dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q (2)

where the parameter a is the displacement between the two sur-
faces with respect to the zero force position h¼ε, i.e., the so called
indentation depth, and E* represents the effective elastic modulus,
also termed the reduced modulus. For two linearly elastic isotropic
materials with Young's modulus Ei and Poisson's ratio ni, where i¼1,
2, E* is defined as follows [31]:

1
E*

¼ 1� n21
E1

þ 1� n22
E2

(3)

Note that, in our simulations, Derjaguin's approximation is used
to calculate surface traction, which is not the exact adhesion. If the
Derjaguin assumptions are not accepted and/or there is friction at
the edge of the contact region, then the adhesive forces canwork on
tangential displacements and the mode-mixity effects have to be
discussed. As noted by Borodich et al. [32], interaction between
adhesion and friction under both static and kinematic conditions is
still an open question.

The parameter ho is the separation of the two surfaces in the
absence of applied and adhesive forces. For spherical indenters, in
the JKR model, the geometry of a spherical contact is approximated
by a parabolic function [31]:

h0ðx; yÞ ¼
x2 þ y2

2R
(4)

where R is the radius of the spherical indenter. For Berkovich and
cube corner indenters, the geometry of the tip is a pyramid having a
triangular base [33]. The initial air gap for a pyramid with a base of
an equilateral triangle with side length m and height of can be
written as follows:

h0ðx; yÞ ¼

8>><
>>:

n
m

� ffiffiffi
3

p
yþ 3

���x���� if
���x���> �

ffiffiffi
3

p
y

2
ffiffiffi
3

p
n
���y���

m
otherwise

(5)

For a Berkovich tip, the angle between the centerline and the
three faces is 65.3�, which gives n/m¼0.133. However, in the case of
a cube corner indenter, the centerline-to-face angle is 35.3�, much
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sharper than a Berkovich tip with n/m¼0.408. For conical indenters,
the initial air gap for an indenter of a right cone with height h and
base radius R can be written as the following:

h0ðx; yÞ ¼
h
�
x2 þ y2

�1=2
R

(6)

The total normal load f can be written as follows:

f ¼
Z Z

U

pðx; yÞdxdy (7)

The following dimensionless variables are introduced: H, D, U0,
P, X, Y, F, and m to transform Eqns. (1), (2) and (7) into the following
normalized forms:

P ¼ 8
3

h
ðH þ 1Þ�9 � ðH þ 1Þ�3

i
(8)

H ¼ �D

þ U0
8m3=2

3p

Z Z
U

�
H
�
X ’; Y ’

�þ 1
	�9 � �H�X ’; Y ’

�þ 1
	 	�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

X � X’
�2 þ �Y � Y ’

�2q dX’dY

(9)

F ¼ 1
3p

∬
U

PðX; YÞdXdY (10)

whereH¼h/ε�1, D¼a/ε, U0¼h0/ε, and P¼pε/Wad. The parameterD
is the normalized indentation depth. For a spherical shape, we have

F ¼ f
3pRWad

; X ¼ xffiffiffiffi
εR

p ; Y ¼ yffiffiffiffi
εR

p , and m ¼
 

RW2
ad

E�2
ε
3

!1=3

, and the initial air

gap can be written as:

U0ðx; yÞ ¼
X2 þ Y2

2
(11)

For a Berkovich shape or a cube corner shape, we have

F ¼ n2f
3pm2Wadε

; X ¼ nx
εm; Y ¼ ny

εm, and m ¼


mWad
nE*

ε

�2=3

. The initial air

gap can be described as:

U0ðx; yÞ ¼
� ffiffiffi

3
p

Y þ 3
���X��� if ���X���> �

ffiffiffi
3

p
Y

2
ffiffiffi
3

p ���Y��� otherwise
(12)

For a conical shape, we have F ¼ h2f
3pR2Wadε

; X ¼ hx
Rm; Y ¼ hy

Rm and

m ¼


RWad
hE*

ε

�2=3
. The initial air gap can be described as:

U0ðx; yÞ ¼
�
X2 þ Y2

�1=2
(13)

Note that the parameter m is the so called Tabor parameter [34],
which is often used to determine whether the JKR or DMT model
would best describe a contact system. Eqn. (9) is then solved by a
virtual state relaxation (VSR) method: the indentation depth D is
gradually increased, and the H vector obtained from the previous
step is used as the initial state for computing H vector in the next
step. In each step, we let time evolve until the final state in equi-
librium is reached. This method accurately plots all the stable
equilibria for each value of D. In all numerical simulations, the value
of D is first increased from minimum to the maximum indentation
depth to simulate the approach process, and thenis decreased back
to the minimum to simulate the detachment process. This method
has been extensively calibrated and validated in recent years,
showing superior capability in reproducing and predicting the
contact behavior of adhesive materials in various kinds of contact
problems [35e38].
4. Results and discussion

4.1. Spherical indenter

Nanoindentation using spherical indenters is first simulated
because, for this case, the analytical solution is known [26] and
consequently provides a baseline for comparison. For the spherical
shape, we found that when the value of Tabor parameter is 1.5, the
numerical results agree very well with the analytical solution
derived from the JKR model, as shown in Fig. 1(a), which plots the

numerical curves of the normalized force F ¼ f
3pRWad

versus the

normalized displacement D¼a/ε for both attachment and detach-
ment processes. It can be seen that the numerical simulation results
successfully capture the pull-in and the pull-off behavior often
observed in nanoindentation experiments [39]. Fig. 1(a) also plots
the distribution of the normalized pressure P in the simulation
domain [�4.0,4.0]�[�4.0,4.0] when the normalized indentation
depths are D ¼�2.5, �1.8, and�1.0 during approach. It can be seen
that when the two bodies are approaching each other from a non-
contact state, e.g. at D ¼ �2.5, the surfaces barely deform with
pressure being nearly zero everywhere. As the two bodies approach
each other one step further, e.g., at D ¼ �1.8, the surfaces jump to a
new equilibrium state suddenly with a non-zero contact area, and
the pressure becomes compressive in the central region and tensile
at the contact edge, which is consistent with the results from
previous studies [31].

A representative loading and unloading force-displacement
curve obtained from 20:1 PDMS using the 74.4 mm radius spher-
ical tip is shown in Fig. 1(b). The observed adhesion hysteresis
shows that the work of adhesion during approach, denoted asWap

ad ,

is much lower than that during detachment, denoted as Wde
ad . Ac-

cording to the nano-JKR force curve method [23], the values ofWap
ad

and Wde
ad can be calculated from the measured pull-off force f apoff

during approach and f deoff during detachment by using the rela-

tionship: Wap
ad ¼ 2

3
f apoff

pR and Wde
ad ¼ 2

3
f deoff

pR, respectively. E
* can be calcu-

lated based on two data points from the unloading portion of the
curve, f deoff at a

de
off (the point where the unloading curve reaches its

minimum force) and f dezero at adezero (the point where the unloading
force equals zero), and the relationship obtained from the JKR

model: E* ¼ 0:95f deoffffiffiffi
R

p ðadezero � adeoff Þ�3=2. Substituting measured values

of f deoff ¼ 29:46 mN, f apoff ¼ 6:57 mN, and adezero � adeoff ¼ 2040 nm into

the nano-JKR force curve equations, one can obtain Wap
ad ¼ 0:019

Jm�2, Wde
ad ¼ 0:084 Jm�2, and E*¼1.11 MPa, all of which are

reasonable values according to our previous experiments [36,40].
Fig. 1(b) shows the force-displacement curve obtained from nu-
merical simulations in a dimensional scale superimposed with the
experimental data. Themechanical properties of the PDMS samples
with other values of stiffness were characterized in a similar
manner.
4.2. Berkovich indenter

For the Berkovich and the cube corner shapes, Fig. 2(a) plots the

numerical simulation curves of the normalized force F ¼ n2f
3pm2Wadε



Fig. 1. (a) The numerical curves of the normalized force F versus the normalized displacement D for the spherical indenter for both attachment and detachment processes. Also
shown is the distribution of the normalized pressure P in the simulation domain [�4.0,4.0]�[�4.0,4.0] when the normalized indentation depth D ¼ �2.5, �1.8, and �1.0 during
approach. (b) The force-displacement curve in a dimensional scale based on Wap

ad ¼ 0:019 Jm�2, Wde
ad ¼ 0:084 Jm�2, and E*¼1.11 MPa superimposed with the experimental data from

nanoindentation tests on 20:1 PDMS using the 74.4 mm radius spherical indenter.
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versus the normalized displacement D¼a/ε for both attachment
and detachment processes when the value of the Tabor parameter
is equal to 1.5. Based on the numerical simulation result, we can see
that the normalized pull-off force Foff¼0.21, the unloading force
reaches its minimum at Dde

off ¼ 1:59, and when the unloading force

equals zero, Dde
zero ¼ 5:31. These values will be used to calculate

Wap
ad ,W

de
ad , and E*. The pull-in behavior is not as obvious, because for

the Berkovich and cube corner indenters, the contact area at a given
indentation depth is much smaller than that obtained from the
nanoidentation tests using spherical indenters. Fig. 2(a) also plots
the distribution of the normalized pressure P in the simulation
domain [�6.7,6.7]�[�6.7,6.7] when the normalized indentation
depths are D ¼ �2.5, 2.5, and 5.5 during approach.

SinceFoff¼0.21, the relationship of Wap
ad and Wde

ad with the

measured pull-off force f apoff during approach and f deoff during

detachment can be written as: Wap
ad ¼ n2f apoff

0:63pm2
ε
and Wde

ad ¼ n2f deoff

0:63pm2
ε
,

respectively. From m ¼


mWad
nE*

ε

�2=3

¼ 1:5, we can obtain that

ε ¼ mWad
1:84nE*. Since Wap

ad is lower than Wde
ad , ε

ap ¼ mWap
ad

1:84nE* should be

smaller than ε
de ¼ mWde

ad
1:84nE*. We then have the following equations,

respectively:

Wap
ad ¼

 
2:92n3f apoff E

*

pm3

!1=2

(14)
Wde
ad ¼

 
2:92n3f deoff E

*

pm3

!1=2

(15)

Since the numerical simulation curve shows that
Dde
zero � Dde

off ¼ 3:72, we have adezero � adeoff ¼ 3:72ε, and then we can
obtain the following relationship:

adezero � adeoff ¼
2:02mWde

ad
nE*

(16)

Eqn. (14), Eqn. (15), and Eqn. (16) can be used to determineWap
ad ,

Wde
ad , and E* for a compliant material based on the nanoindentation

tests using Berkovich indenters and cube corner indenters. Note
that for the Berkovich indenter, n/m ¼ 0.133; whereas for the cube
corner indenter, n/m ¼ 0.408.

A complete loading and unloading force-displacement curve
obtained from 16.7:1 PDMS using the Berkovich tip is shown in
Fig. 2(b), from which we can obtain that f deoff ¼ 3:39 mN, f apoff ¼ 0:77

mN, and adezero � adeoff ¼ 1166 nm. Substituting these values into Eqns.

(14)e(16), we can obtain that Wap
ad ¼ 0:046 Jm�2, Wde

ad ¼ 0:097
Jm�2, and E*¼1.26 MPa. The result showing that the reduced
modulus slightly increased from 1.11 MPa for 20:1 PDMS to
1.26 MPa for 16.7 PDMS is expected, since the higher the degree of
PDMS network's crosslinking, the stiffer the sample will be [18,40].
Fig. 2(b) also shows the force-displacement curve obtained from
numerical simulations in a dimensional scale based on
Wap

ad ¼ 0:046 Jm�2, Wde
ad ¼ 0:097 Jm�2, and E*¼1.26 MPa super-

imposed with the experimental data.



Fig. 2. (a) The numerical curves of the normalized force F versus the normalized displacement D for the Berkovich indenter for both attachment and detachment processes. The
value of Tabor parameter is set to be 1.5. Also shown is the distribution of the normalized pressure P in the simulation domain [�6.7,6.7]�[�6.7,6.7] when the normalized
indentation depth D ¼ �2.5, 2.5, and 5.5 during approach. (b) The force-displacement curve in a dimensional scale based onWap

ad ¼ 0:046 Jm�2,Wde
ad ¼ 0:097 Jm�2, and E*¼1.26 MPa

superimposed with the experimental data from nanoindentation tests on 16.7:1 PDMS using the Berkovich indenter.
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4.3. Cube corner indenter

To analyze the results from the cube corner indenters, a com-
plete loading and unloading force-displacement curve obtained
from 5:1 PDMS is shown in Fig. 3(a), from which f deoff ¼ 1:90 mN,

f apoff ¼ 0:57 mN, and adezero � adeoff ¼ 902 nm. Substituting these values

into Eqns. (14)e(16) and keeping in mind that, for the cube corner
indenter, we have n/m ¼ 0.408, we can obtain that Wap

ad ¼ 0:361
Fig. 3. (a) The force-displacement curve in a dimensional scale based on Wap
ad ¼ 0:361 Jm�2

nanoindentation tests on 5:1 PDMS using the cube corner indenter. (b) The force-displacem
E*¼3.78 MPa superimposed with the experimental data from nanoindentation tests on 5:1
Jm�2, Wde
ad ¼ 0:659 Jm�2, and E*¼3.63 MPa. Fig. 3(a) shows the

force-displacement curve obtained from numerical simulations in a
dimensional scale based on Wap

ad ¼ 0:361 Jm�2, Wde
ad ¼ 0:659 Jm�2,

and E*¼3.63 MPa superimposed with the experimental data. The
result of E*¼3.63 MPa for 5:1 PDMS is in good agreement with the
experimental results obtained from the macroscopic compression
test [18]. To check if it is consistent with the results obtained from
the nanoindentation tests using other types of indenters, a
, Wde
ad ¼ 0:659 Jm�2, and E*¼3.63 MPa superimposed with the experimental data from

ent curve in a dimensional scale based on Wap
ad ¼ 0:086 Jm�2, Wde

ad ¼ 0:097 Jm�2, and
PDMS using the Berkovich indenter.
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complete loading and unloading force-displacement curve ob-
tained from 5:1 PDMS using the Berkovich indenter has been
shown in Fig. 3(b), from which f deoff ¼ 1:13 mN, f apoff ¼ 0:90 mN, and

adezero � adeoff ¼ 389 nm. Substituting these values in Eqns. (14)e(16)

and using n/m ¼ 0.133, Wap
ad ¼ 0:086 Jm�2, Wde

ad ¼ 0:097 Jm�2,
and E*¼3.78 MPa. The value of E* is slightly higher but fairly
consistent with the result obtained from the nanoindentation tests
using the cube corner indenter. Fig. 3(b) shows the force-
displacement curve obtained from numerical simulations in a
dimensional scale based on Wap

ad ¼ 0:086 Jm�2, Wde
ad ¼ 0:097 Jm�2,

and E*¼3.78 MPa superimposed with the experimental data.
4.4. Conical indenter

For the conical indenter, Fig. 4(a) plots the numerical simulation

curves of the normalized force F ¼ h2f
3pR2Wadε

versus the normalized

displacement D¼a/ε for both attachment and detachment pro-
cesses when the value of the Tabor parameter is equal to 1.5. Based
on the numerical simulation result, we can see that the normalized
pull-off force Foff¼3.57, the unloading force reaches its minimum at
Dde
off ¼ 5:46, and when the unloading force equals zero,

Dde
zero ¼ 15:00. These values will be used to calculate Wap

ad , W
de
ad , and

E*. Fig. 4(a) also plots the distribution of the normalized pressure P
in the simulation domain [�4.0,4.0]�[�4.0,4.0] when the normal-
ized indentation depths are D ¼ �3.0, �1.0, and �0.5 during
approach. It can be seen that, for conical indenters, the maximum
compressive pressure at the center of the contact area forms a
sharp peak.
Fig. 4. (a) The numerical curves of the normalized force F versus the normalized displa
detachment processes. The value of Tabor parameter is set to be 1.5. Also shown is the dis
when the normalized indentation depths are D ¼ �3.0, �1.0, and �0.5 during approach. (b) T
0:884 Jm�2, and E*¼3.44 MPa superimposed with the experimental data from nanoindenta
SinceFoff¼3.57, the relationship of Wap
ad and Wde

ad with the

measured pull-off force f apoff during approach and f deoff during

detachment can be written as: Wap
ad ¼ h2f apoff

10:71pR2
ε
and Wde

ad ¼ h2f deoff

10:71pR2
ε
,

respectively. From m ¼


RWad
hE*

ε

�2=3

¼ 1:5, we can obtain that

ε ¼ RWad
1:84hE*. Since Wap

ad is lower than Wde
ad , ε

ap ¼ RWap
ad

1:84hE* should be

smaller than ε
de ¼ RWde

ad
1:84hE*. We then have the following equations,

respectively:

Wap
ad ¼

 
h3f apoff E

*

5:82pR3

!1=2

(17)

Wde
ad ¼

 
h3f deoff E

*

5:82pR3

!1=2

(18)

Since the numerical simulation curve shows that
Dde
zero � Dde

off ¼ 9:54, we have adezero � adeoff ¼ 9:54ε, and then we can

obtain the following relationship:

adezero � adeoff ¼
5:18RWde

ad
hE*

(19)

Eqn. (17), Eqn. (18), and Eqn. (19) can be used to determineWap
ad ,

Wde
ad , and E* for a compliant material based on the nanoindentation

tests using conical indenters. The ratio of R/h can be obtained from
the value of the conical angle. For the conical indenter with 90�

conical angle, we have R/h ¼ 1.
cement D for the conical indenter with 90� conical angle for both attachment and
tribution of the normalized pressure P in the simulation domain [�4.0,4.0]�[�4.0,4.0]
he force-displacement curve in a dimensional scale based onWap

ad ¼ 0:475 Jm�2,Wde
ad ¼

tion tests on 5:1 PDMS using the conical indenter.



Table 1
Elastic modulus of PDMS network samples with different amount of crosslinking.

Base to Crosslinker Ratio, n 5:1 7:1 10:1 16.7:1 20:1 25:1 30:1 33:1
E (MPa) 2.72 ± 0.19 2.18 ± 0.17 1.75 ± 0.18 0.95 ± 0.19 0.83 ± 0.20 0.74 ± 0.09 0.28 ± 0.09 0.25 ± 0.04
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A complete loading and unloading force-displacement curve
obtained from 5:1 PDMS using a conical tip with 90� conical angle
has been shown in Fig. 4(b), from which we can obtain that
f deoff ¼ 4:15 mN, f apoff ¼ 1:20 mN, and adezero � adeoff ¼ 1330 nm.

Substituting these values and the value of R/h ¼ 1 into Eqns.
(17)e(19), we can obtain that Wap

ad ¼ 0:475 Jm�2, Wde
ad ¼ 0:884

Jm�2, and E*¼3.44MPa. Fig. 4(b) also shows the force-displacement
curve obtained from numerical simulations in a dimensional scale
based on Wap

ad ¼ 0:475 Jm�2, Wde
ad ¼ 0:884 Jm�2, and E*¼3.44 MPa

superimposed with the experimental data. The value of E* is
slightly lower than the values obtained by using the Berkovich
indenter and the cube corner indenter. Several factors could explain
the discrepancy in the modulus results. First, slight variations from
the ideal geometries used in the numerical simulations would be
expected for the real tips due to blunted points in the three tips.
Second, in numerical simulations, Derjaguin's approximation is
used to calculate surface traction, which is not the exact adhesion.
Finally, the formulas used in the numerical simulation are restricted
in the small strain range and linear elastic material behavior. These
assumptions can lead to some error in modulus calculation.
4.5. Crosslinking effect

Since the elastic modulus of the diamond indenter tip is orders
of magnitude larger than the elastic modulus of PDMS, the second
term in Eqn. (3) is negligible. Hence, using the reduced modulus of
PDMS, E*, and the Poisson's ratio, n, the elastic modulus of PDMS, E,
can be calculated as E¼(1�n2)E*¼0.75E*. The elastic modulus re-
sults of the tested PDMS samples versus the PDMS base/curing
agent weight ratio, n, are listed in Table 1. It is clear that the PDMS
elastic modulus is related to the elastomer base/curing agent ratio,
Fig. 5. The elastic modulus, E, in MPa can be expressed as a function of the PDMS

crosslinking weight percentage, X, as E ¼ E0 þ E1

1þexp



X0�X

b

�. It also shows that the elastic

modulus results of the tested PDMS samples obtained from nanoindentation tests are
lower than the results obtained from the compression tests.
i.e., the degree of crosslinking. The elastic modulus, E, in MPa can be
expressed as a function of the PDMS crosslinking weight percent-
age, X, as E ¼ E0 þ E1

1þexp



X0�X

b

�, as shown in Fig. 5. The parameter

E0 ¼ 0.25 is the minimum value of the elastic modulus; the
parameter E1 ¼ 2.47 is the maximum minus the minimum value of
the elastic modulus in the whole range; the parameter X0 ¼ 9.80 is
the crosslinking weight percentage halfway between the highest
and the lowest value of the elastic modulus; and the paramter b ¼
2.88, related to the slope of the center portion of the curve. In a
previous study, Wang et al. utilized a custom-built macroscopic
compression tester to measure the elastic modulus of a series of
PDMS samples with different crosslink densities [18], and the re-
sults were also plotted in Fig. 5 for the purpose of comparison. It can
be seen that the elastic modulus results of the tested PDMS samples
obtained from nanoindentation tests are lower than the results
obtained from the compression tests.

5. Conclusions

Although the mechanical properties of PDMS have been previ-
ously studied, none of these investigations focused on the change of
the elastic modulus over a wide range of the crosslinking weight
ratios [41e43]. Most of the studies only tested two or three
different stiffnesses, which is not enough to fully understand the
crosslinking effect on the PDMS elastic modulus. In this study, we
have conducted nanoindentation tests using different types of in-
denters to characterize the mechanical properties of PDMS with a
much wider range of crosslinking ratios. To interpret the measured
load-displacement profiles from nanoindentation tests, we have
successfully extended the nano-JKR force curve method to include
Berkovich, cube corner, and conical indenters by conducting a nu-
merical simulation in which the adhesive interactions are repre-
sented by an interaction potential and the surface deformations are
coupled by using half-space Green's functions discretized on the
surface. The elastic modulus results of the tested PDMS samples
show good agreement with the results reported by a previous study
using a custom-built macroscopic compression tester. The numer-
ical simulation package can be easily extended to study nano-
indentation tests using other types of indenter, such as Vickers
indenters [44], Knoop indenters [45], cylindrical flat indenters and
frustum indenters, which will be of significant importance for
mechanical characterization of polymers and other compliant
materials.
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