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Abstract

The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present
investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions.
Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on
the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the
combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The
results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
& 2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Outstanding mechanical properties of nanowires have been
of considerable interest to researchers. For example, Wu et al.
[1] measured the yield strength of Au nanowires by three-point
bending using atomic force microscopy (AFM), and it's
average values are 5.671.4 GPa, which is more than 25
times higher than the bulk Au values. Treacy et al. [2] found
that the Young's modulus of carbon nanotubes was in the Tera-
Pascal (TPa) range. Cuenot et al. [3] reported the diameter-
dependent elastic modulus effects in Ag and Pb nanowires.
Meanwhile, the classical beam theory has been unsuccessful to
theoretically analyze the mechanical properties of one-
dimensional nano-materials. Hence, accurate description of
nanowires' mechanical behavior is essential.

Surface effects have been recognized as significant factors
during the deformation process of nanobeams. Chen et al. [4]
proposed a core–shell composite nanowires model to explain
/10.1016/j.pnsc.2015.09.012
15 Chinese Materials Research Society. Production and hosting by
mmons.org/licenses/by-nc-nd/4.0/).

g author. Tel.: þ86 10 6233 3884; fax: þ86 10 6233 2345.
ss: yjsu@ustb.edu.cn (Y. Su).
nder responsibility of Chinese Materials Research Society.
the surface effects on the mechanical behavior of nanowires.
He et al. [5] investigated surface stress and surface elasticity
effects on the elastic behavior of statically bent nanowires.
Jiang et al. [6] addressed combined surface and shear
deformation effects based on the Timoshenko beam theory
and the Young–Laplace equation. Wang and Feng [7] studied
surface effects on buckling and vibration behavior of nano-
wires. All these research reports show that the surface effects
play a significant role in the deformation behavior of one-
dimensional nano-materials.
Based on the lattice dynamics theory and experimental

observations on phonon dispersion, Eringen [8,9] proposed the
non-local elasticity theory in 1972. According to this theory, it is
assumed that the stress at a given reference point depends not
only on the strain at this point, but also on the strain at other
points in the body. This way, the influence of the long range
forces between the atoms is taken into consideration, and thus the
internal size scale can be introduced in the constitutive equations.
In recent years, many researchers have successfully applied the
non-local elasticity theory for explaining the deformation beha-
vior of micro- and nanobeams [10–13].
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In this letter, the non-local elasticity theory is implemented
to analyze the bending behavior of centrally loaded nanowires
with consideration of surface elasticity and surface stress.
2. Non-local elasticity and surface effects

Under certain conditions, based on the non-local elasticity
theory, the non-local stress tensor, sxy, within a two-dimensional
region, using the Green's functions, is expressed as [8]:

s
0
xy ¼ 1� e0lð Þ2∇2

� �
sxy; ð1Þ

where s
0
xy is the (classical) stress tensor, l represents internal

characteristic length (e.g., the lattice parameter, grain size, C–C
bond length, etc.). The Laplace operator ∇2 equals ∂2/∂x2þ∂2/∂y2

in Cartesian coordinates, and e0 is a constant appropriate to each
material. Eringen [8] obtained the magnitude of e0¼0.39 by
matching the dispersion curves of the plane waves with those of
atomic lattice. Hence, the Hooke's law for uniaxial stress state can
be expressed as:

s xð Þ� e0lð Þ2 ∂
2s xð Þ
∂x2

¼ Eϵ xð Þ ð2Þ

Since the surface-to-volume ratio is large in nano-materials,
nanowires were treated as a superposition of the surface layers
and the bulk volume. The thickness of the beam is much larger
than the thickness of the surface layer t0. This way, the
traditional flexural rigidity D for the bulk material is replaced
by the effective flexural rigidity D* for the composite beam.
The effective flexural rigidity D* for either rectangular or
circular cross-section is:

D � ¼
Eab3

12 þ Esab
2

2 þ Esb
3

6 rectangleð Þ
πEd4

64 þ πEsd
3

8 circularð Þ
;

8<
: ð3Þ

where a is the length of rectangle, b represents the width of
rectangle, d is the diameter of circular, E and Es represent the
Young's modulus of the bulk and the surface, respectively.

The existing constant residual surface tension on the
surfaces above and below the bulk material causes a nanobeam
to curve. The mathematic relation between the curvature tensor
κ and the stress jump τþij �τ�ij

D E
across a surface is based on

the generalized Laplace–Young equation [5,6,14]:

τþij �τ�ij
D E

ninj ¼ τsκ; ð4Þ

where τþij and τ�ij denote the upper and the lower surface
stresses, respectively, ni is the unit normal vector to the
surface, κ is the curvature tensor of the nanowire and τs is
the surface stress tensor given by [5,6,15]:

τs ¼ τ0þEsεx; ð5Þ
where τ0 is the residual surface stress along the longitudinal
direction of the nanobeam and εx is the strain along the
nanowire longitudinal direction.

According to Eq. (4), the stress jump leads to a distributed
transverse force q(x) along the nanowire longitudinal direction
[14]. For a deformed nanowire, the distributed force is given
by [5,6]:

q xð Þ ¼Hw″ xð Þ; ð6Þ
where w(x) denotes the nanobeam transverse displacement, and
H is a constant parameter given by [5,6]:

H ¼
2τsa rectangleð Þ
2τsd circularð Þ

(
ð7Þ

3. Non-local elasticity and surface stress coupling effects on
the Euler–Bernoulli beam

Considering the Euler–Bernoulli beam model, the equili-
brium equations for the shear force, T, the bending moment,
M, and the transverse distributed load, q(x), are:

∂T
∂x

þq xð Þ ¼ 0 ð8Þ

T� ∂M
∂x

¼ 0 ð9Þ

The bending moment constitutive relation accounting for the
non-local elasticity and surface stress effects is written as:

M� e0lð Þ2 ∂
2M

∂x2
¼ �D� ∂

2w

∂x2
ð10Þ

In view of Eqs. (8)–(10), the governing equation for the
bending of non-local Euler–Bernoulli beam with the surface
effects is given by

D� ∂
4w

∂x4
þ e0lð Þ2 ∂

2q xð Þ
∂x2

�q xð Þ ¼ 0 ð11Þ

By substituting Eq. (6) into Eq. (11), one obtains

D�þH e0lð Þ2� � ∂4w
∂x4

¼H
∂2w
∂x2

ð12Þ

Letting

ηEns ¼
HL2

D�þH e0lð Þ2 ð13Þ

The boundary conditions for the two kinds of the end are:

Clamped end : w 0ð Þ ¼ 0;w0 0ð Þ ¼ 0 ð14Þ
Simply supported end : w 0ð Þ ¼ 0;w″ 0ð Þ ¼ 0 ð15Þ
Fig. 1 shows the deformation of a nanobeam with surface stress

in different boundary conditions. As a constant concentrated force
P is loading the free end at x¼L, the moment and the force
equilibrium conditions of the clamped-free beam (C-F) are:

�M 0ð Þ ¼ PLþ
Z L

0
Hw″ xð Þxdx¼ PLþHLw0 Lð Þ�Hw Lð Þ

ð16Þ
and

T 0ð Þ ¼ Pþ
Z L

0
Hw″ xð Þdx¼ PþHw0 Lð Þ�Hw0 0ð Þ; ð17Þ

respectively. When the simply supported beam (S-S) subjected to
a concentrated force P at the midpoint x¼L/2, the slope at x¼L/2
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Fig. 1. (a) Illustration of a nanobeam with surface stress. Deformation of
a nanowire with different boundary conditions: (b) simply supported;
(c) clamped–clamped; (d) clamped-free.
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is zero due to symmetry, resulting in

w'
L

2

� �
¼ 0 ð18Þ

and the force equilibrium condition at x¼0 is

T 0ð Þ ¼ P

2
þ

Z L
2

0
Hw″ xð Þdx¼ P

2
�Hw0 0ð Þ ð19Þ

For the clamped–clamped nanowire (C-C), a constant
concentrated force P is applied at the midpoint x¼L/2. At
x¼0, when the C-C nanowire boundary conditions are equal to
those of the cantilever beam, the slope is identical with the
simply supported beam at x¼0, and the force equilibrium
condition at x¼0 is

T 0ð Þ ¼ P

2
þ

Z L
2

0
Hw″ xð Þdx¼ P

2
ð20Þ

The solution to Eq. (11) with different boundary conditions
and concentrated force is written as:

w xð Þ ¼

P
2H x� Lffiffiffiffi

ηEns
p

sinh

ffiffiffiffi
ηEns

p
L x

� �
cosh

ffiffiffiffi
ηEns

p
2

� �
2
64

3
75; xA 0; L2
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P
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ηEns
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p
L x�
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p
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8>>>>>>>>>>>>>>>><
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ð21Þ
When the effects of non-local elasticity are neglected, the

non-local parameter e0l is equal to zero, and Eq. (21) are
reduced to the solutions in Ref. [5]. When the surface effects
are neglected, the solutions are demonstrated in Ref. [11].
When both the non-local elasticity and the surface effects are
neglected, the general solution with different boundary condi-
tions is expressed as:

w xð Þ ¼

P 3L2 �4x2ð Þx
48D� ; xA 0; L2

� �
S�Sð Þ

P 3L�4xð Þx2
48D� ; xA 0; L2

� �
C�Cð Þ

P 3L� xð Þx2
6D� ; xA 0;L½ � C�Fð Þ

8>>><
>>>:

ð22Þ
4. Results and discussion

To study the effects of surface stress and non-local elasticity
during the deformation behavior of the Euler–Bernoulli beam
in bending, we used the same parameters as in He’s [5] work:
d¼50 nm, E¼76 GPa, τs¼1 μN/μm and Es¼0. The non-local
parameter e0l is assumed to be 80 nm and the beam length is
1000 nm.
Fig. 2 shows the displacement profile of different nanowire

models based on the classical Euler–Bernoulli beam theory
subjected to the same concentrated load with the non-local
elasticity and surface stress coupling effect, only with the non-
local elasticity effect, only with the surface stress effect and without
any effects. All effects have a significant influence on the static
displacement of nanowires with different boundary conditions. Due
to the surface stress effect, the C-F nanobeam exhibits less stiff
behavior, while the S-S and the C-C nanobeams are stiffer. This
phenomenon is due to the signs of the curvature and surface stress,
which cause an additional distributed load and change the nanowire
stiffness. For the C-F nanobeam a positive curvature results in a
positive distributed transverse force, which increases the transverse
bending displacement. For the S-S nanobeam the negative
curvature results in negative distributed transverse force which
decreases the transverse bending displacement. For the C-C
nanobeam the negative curvature plays more important role than
positive curvature when τ040. The result we obtained has a
similar trend in comparison with the work of others [6]. Owing to
the non-local elasticity effect, the S-S and C-C nanobeams show
less stiff behavior, while the C-F nanobeam is the same as the
classical Euler–Bernoulli beam, which has been clearly discussed
by Reddy [16]. Considering the non-local continuum theory, the
interaction of the long range forces between the atoms of a
nanobeam increases the transverse bending displacement, which
exhibits lower stiffness. The combined effects of the surface stress
and non-local elasticity result in even stiffer behavior compared
with the single effect in the S-S and C-C nanobeams. At the same
time, the C-F nanobeam with the combined effects shows less stiff
behavior compared with the classical Euler beam, but stiffer than
the nanobeam with the surface stress effect.
The surface effect is based on the core–shell composite model.

Therefore, a nanowire can be divided into two parts: the core,
which has the same properties as the bulk, and the shell or the
surface, which has different properties due to the surface stress.
That also means that the atoms arrangement between the core and
the surface is different. The non-local elasticity theory is aimed at
studying the interaction of the long range forces between the atoms
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by assuming that the stress at a given reference point depends not
only on the strain at this point, but also on the strain at other nearby
points. Thus, the different atoms arrangement could cause different
interaction of the long range forces. We define the long range
interaction forces of the surface atoms using surface non-local
elasticity. It can be seen that the surface non-local elasticity and not
the bulk non-local elasticity plays a significant role in the nanowire
bending deformation.

To study the nanowire size effect on its bending behavior, the
diameter of nanowires was varied and its length was fixed at
1000 nm to observe the maximum displacement. The results in
Fig. 3 show that when the L/d aspect ratio is relatively small, the
effects of the surface stress and non-local elasticity can be
neglected. As the aspect ratio gets relatively larger, the surface
stress effect decreases the maximum displacement significantly,
while the non-local elasticity effect slightly increases the beam
displacement for the S-S and C-C boundary conditions. The
surface non-local elasticity effect has even greater impact on the
bending deformation behavior than the surface elasticity effect as
the aspect ratio increases. For the C-F nanobeam, the non-local
elasticity has no obvious effect on the bending behavior when the
end force is applied to the beam, as proven by Wang [11]. But at
the same time, the surface nonlocal elasticity effect can affect the
maximum displacement as the aspect ratio increases. The differ-
ence between non-local surface and surface elasticity is due to the
effects of long range forces between the surface atoms.
5. Conclusions

The surface stress effect, non-local elasticity effect and their
coupling were investigated for the bending deformation behavior
based on the Euler–Bernoulli beam theory. The surface non-local
elasticity plays a more important role than the bulk elasticity in the
coupling effect at the nano-scale. Static bending results show that
nanowires can be either stiffer or less stiff, or do not change at all
compared with the classical Euler–Bernoulli beam, depending on
the boundary conditions. When the structure size is at the
nanometer scale, the surface stress, non-local elasticity and the
coupling effects have a significant impact on the deformation
behavior of nanowires. This work is meaningful in relation to the
applications of nanowires and development of basic elements of
the nano-electro-mechanical systems.
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