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Size-dependent concentrations of thermal
vacancies in solid films†
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Solid films are considered as typical model systems to study size effects on thermal vacancy concentration

in nanomaterials. By combining the generalized Young–Laplace equation with the chemical potential of

vacancies, a strict size-dependent thermodynamic model of vacancies, which includes the surface intrinsic

elastic parameters of the eigenstress, Young’s modulus and the geometric size of the solid films, was

established. The vacancy concentration changes in the film with respect to the bulk value, depending

on the geometric size and surface stress sign of the solid films. Atomistic simulations of Au and Pt

films verified the developed thermodynamic model. These results provide physical insights into the

size-dependent thermal vacancy concentration in nanomaterials.

1. Introduction

Nanostructured materials possess many unique properties that
differ from their bulk counterparts due to their high surface-to-
volume ratio, size-dependent surface energy/stress, and possible
quantum effects at the small scale. One of their unique proper-
ties is that the vacancy concentration changes significantly
with the material size, especially at the nanometer scale.1–3

Thermal vacancies play an important role in mechanical, optical,
electrical and thermal properties.4–9 A better knowledge of
the role of the thermal vacancies in nanomaterials is vital for
understanding their properties, behavior and application
research in the future.

For sufficiently large systems, the concentration of thermal
vacancies at a given temperature T and pressure P follows the
Arrhenius empirical equation:

Xv ¼ exp �mv T ;Pð Þ
kBT

� �
; (1)

where mv(T, P) = DHv � TDSv + PDVv is the chemical potential
of vacancies, in which DHv is the vacancy formation enthalpy at
the standard state, DSv is the formation entropy, DVv is the
formation volume, T is the absolute temperature and P is the
hydrostatic pressure applied to the solid. Based on eqn (1),

the applied stress will change the concentration of thermal
vacancies in the solid by changing the chemical potential of
the vacancies.

The surface stress and energy of solids have been studied
for several decades by many researchers.10–12 Surface stress will
induce initial strain in the solid when its geometrical size
decreases to the nanometer scale. Fresh surfaces without
relaxation, created by cutting a crystal along the crystallographic
plane, would have much higher surface energy. Energy minimi-
zation and relaxation of the separated freestanding crystals occur
unavoidably, and atoms locally rearrange their positions to
reduce the total energy.13–15 The relaxation reduces the surface
and total energies, but may lead to a change in the lattice spacing
of a nanometer-sized material. Thus, it induces initial strain in
the nanomaterial core.16 Because of the initial deformation, both
surface energy density and surface stress are size-dependent. It is
reasonable to expect that the size-dependent surface stress of the
nanomaterial will lead to the size-dependent concentration of
thermal vacancies. To date, thermal vacancies have been quite
difficult to study experimentally. However, positron annihilation
is a well-established technique to study intrinsic defects in
materials. For example, Mukherjee et al. carried out positron
lifetime and Doppler broadening measurements of polymer-
containing silver nanoparticles, and observed that the lifetime of
the positrons trapped at the grain surface defects and the grain–
polymer interface decreased with the grain size.17 Nambissan et al.
studied microstructure defects in ZnFe2O4 nanocrystals of various
sizes, down to 5 nm, by positron lifetime measurements, and
observed normal to inverse spinel transformation with size
reduction.18 Chaudhuri et al. described size-induced changes
due to the defects in chemically synthesized ZnO nanoparticles.19

The presence of zinc vacancies and charged oxygen vacancies
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was demonstrated. The size-induced changes showed contrasting
trends as the system size varied from 4 nm to 85 nm, and the
critical size was 23 nm. Gao et al. investigated the evolution of
vacancies in nanoporous Au(Pt) using positron annihilation
spectroscopy and showed that there was a large vacancy concen-
tration increase in the dealloying process.20

Many researchers have attempted to theoretically investigate
the size-dependent vacancy formation energy in nanomaterials
to understand the underlying physical mechanisms. Since the
vacancy formation process involves breaking atomic bonds, it
was thought that the vacancy formation energy could be related
to the crystal cohesive energy based on the semi-empirical
model.21–23 Qi and Wang provided the relationship between
the vacancy formation energy and the cohesive energy of
small particles to conclude that the vacancy formation energy
is lower than in the corresponding bulk metal.24–27 Ouyang
et al. presented an analytical model to address the vacancy
formation energy in metallic nanoparticles under high tempera-
ture and pressure, based on the size-dependent cohesive energy
consideration.28–30 They found that the vacancy formation energy
increases with particle size and that the vacancy formation energy
on the surface and at the interface is smaller than in the interior
core. Gladkikh et al. demonstrated that the cohesive energy and
melting temperature display similar dependence on the particle
size by calculating the size-dependent vacancy formation energy
of nanomaterials using a proportionality between the vacancy
formation energy and the melting temperature Ev = WTm.31

Because the melting temperature, Tm, of small particles increases
with particle size,32 they concluded that the vacancy formation
energy is lower in smaller particles. Guisbiers et al. developed a
universal equation to describe the size and shape effects on many
material properties. They developed a theoretical model to
account for the size-dependent vacancy formation energy and
entropy, based on the universal equation, and found that the
vacancy concentration increases with decreasing sample size
and increasing temperature.33,34 However, Müller et al. reported
an opposite result that the surface energy and surface stress
contributions in metallic nanoparticles can actually increase the
vacancy formation energy with decreasing particle size.2 They
also reported a decreased vacancy concentration with decreasing
particle size. Recently Salis et al.3 indicated that the total core
and surface fractional concentrations had maxima at a certain
particle radius because the surface energy increases both the
core and surface vacancy formation energies, while the surface-
to-volume ratio increases the relative concentration of surface
defects with decreasing particle size.

In the present work, the solid film is considered as a typical
model system to study the size-dependent concentration of
thermal vacancies in nanomaterials. By analyzing the size-
dependent surface stress of the solid films and the contribution
of surface stress to the chemical potential of vacancies, an eigen
size-dependent thermodynamic model of vacancies in solid
films, which includes the surface eigenstress, Young’s moduli
of the surfaces and the core, the vacancy formation volume, and
the geometric size of the solid films, was established. Molecular
dynamics (MD) simulations with the embedded atom method

(EAM) potentials of Au and Pt(001) solid films were used to
verify the developed thermodynamic model. The effects of
intrinsic surface elastic parameters, including the surface eigen-
stress and surface Young’s modulus, on the size-dependent
vacancy concentration in solid films are discussed, along with
physical insights into the size-dependent thermal vacancy
concentration in solid films.

2. Theoretical analysis
2.1 Size-dependent vacancy concentration

To understand the size-dependent vacancy concentration in
nanomaterials, it is helpful to start from the definition of the
vacancy formation energy in bulk materials.2 The process of
vacancy creation in a crystalline solid of N atoms consists of
removing an atom from the volume of the crystal and inserting it
into a reservoir with a certain chemical potential, ms. Denoting
the cohesive energy per atom in the volume of the crystal as E0,
the energy of the perfect crystal is given by NE0. The energy of the
crystal with one atom removed is given by (N � 1)E0 + w0, where
w0 is the excess energy of the vacancy. Accordingly, the vacancy
formation energy, Ev, is expressed as

Ev = (N � 1)E0 + w0 + ms � NE0. (2)

The thermal vacancy, also named the Schottky defect, can be
created by removing one of the interior atoms from the crystal
and replacing it with an atom on the crystal surface. In practice,
when a Schottky defect is created, the crystal surface acts as the
reservoir for the removed atom, and ms is the chemical potential
of the crystal surface. One cautionary note is that ms is equal to
the cohesive energy of the surface atoms Es. Therefore, the
vacancy formation energy in a bulk crystal can be written as

Ev = (N � 1)E0 + w0 + ms � NE0 = w0 + Es � E0. (3)

When a nanomaterial is created by removing it from a bulk
material, relaxation occurs inevitably because of the high energy
of the newly created surfaces. After relaxation, the surface stress
causes initial strain in the core of the nanomaterial with respect
to its bulk counterpart.36,37 Consequently, the cohesive energy of
the core atoms in the nanomaterial is given by Ec

0 = E0 + Ec
strain,

where Ec
strain is the strain energy induced by the initial strain. The

cohesive energy of the nanomaterial surface atoms is given by
En

s = Es + Es
strain, where Es

strain is the strain energy of the surface
induced by the surface stress. It should be noted here that the
surface of the bulk material is taken as the reference state. The
excess energy of the vacancy in the core of the nanomaterial is
given by wn

s = w0 + wc
strain, where wc

strain is the change in the excess
energy induced by the initial strain. The vacancy formation
energy in the nanomaterial can be written as

En
v = (w0 + Es � E0) + (wc

strain + Es
strain � Ec

strain). (4)

The initial deformation in the core and the surface stress of
the nanomaterial are size-dependent, inducing size-dependent
wc

strain, Es
strain and Ec

strain. Consequently, the cohesive energy
of the core atom, Ec

0, the cohesive energy of the surface atom,
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En
s , and the excess energy of the vacancy, wn

s , are also size-
dependent, resulting in size-dependent vacancy formation energy
and equilibrium vacancy concentration in the nanomaterial.

2.2 Surface stress and initial strain in solid films

The present study focuses on the fundamental elastic proper-
ties of solid surfaces and thus considers solid films as typical
structures to simplify the theoretical analysis. When a solid
film is taken from its stress-free bulk counterpart, the film will
relax to reach equilibrium and meet the energy minimization
requirement due to the creation of a new surface. The relaxa-
tion process can be separated into normal relaxation and
parallel relaxation.36,37 After normal relaxation, an eigenstress
s0

s exists in the two-dimensional (2D) film surface, which is
equal to the surface stress of the bulk material. After parallel
relaxation, a stress (or initial strain eini) will be generated in
the three-dimensional (3D) core to balance the surface stress,
and the 2D surfaces must undergo the same deformation as
the core because the surfaces coherently adhere to the core,
changing the surface stress to sini

s .
If the normal state after relaxation is taken as the reference

configuration state, the total potential energy of a film is
given by

U(e) = Sus(e) + Vuc(e), (5)

where e denotes strain, us is the generalized surface energy
density per unit area, uc is the core energy density per unit
volume, and S and V are the surface area and volume of the
film, respectively.

For a solid film with thickness h and length L0 after relaxa-
tion, the energy density is given by

us eð Þ ¼ u0s þ 2� s0s e
� �

þ 2� 1

2
Yse2

� �
(6a)

ucðeÞ ¼ u0c þ 2� 1

2
Yce2

� �
; (6b)

where u0
s and u0

c are the generalized surface and core energy
densities in the strain-free state, respectively; s0

s is the biaxial
surface eigenstress in the 2D surface; and Yc and Ys are the
biaxial Young’s moduli of the core and surface, respectively.
Substituting eqn (6a) and (6b) into eqn (5), the total potential
energy of a solid film is given by

U(e) = 2L0
2(u0

s + 2s0
se + Yse

2) + hL0
2(u0

c + Yce
2). (7)

At equilibrium, the minimum energy requires qU(e)/qe|e=eini = 0,
which yields the generalized Young–Laplace equation35 to
describe the mechanical force balance between the film surface
and the core

2s0
s + 2Yse

ini + hYce
ini = 0. (8)

From eqn (8), the initial strain in the core induced by the
surface stress is given by

eini ¼ � 2s0s
2Ys þ hYc

: (9)

The biaxial surface and lattice stress of the solid film are then,
respectively, given by

ss ¼ s0s þ Yseini ¼ s0s 1� 2Ys

2Ys þ hYc

� �
(10)

sc ¼ Yceini ¼ �
2s0sYc

2Ys þ hYc
: (11)

2.3 Equilibrium vacancy concentration in solid films

For sufficiently large systems (N 4 103 atoms), which consist
of N atoms and n vacancies, the chemical potential of the
vacancies is determined as follows:

mv ¼
@DG
@n
¼ DHv � TDSf

v þ kBT ln
n

N þ n
; (12)

where kB is the Boltzmann’s constant and DSf
v is the vibration

entropy.
The standard chemical potential of the vacancies, m0

v, is
determined as the change in the free energy of an infinite
crystal per added vacancy, disregarding the mixing entropy,

m0
v = DHv � TDSf

v. (13)

It is considered here that if n is a small quantity, the molar
concentration of vacancies is given by

Xv E n/(N + n). (14)

Consequently,

mv ¼ m0v þ kBT ln
n

N þ n
¼ m0v þ kBT lnXv: (15)

The free energy of the crystal containing n vacancies can be
represented in the form of a sum:

DG ¼
X
i

Nimi þ nmv; (16)

where Ni and mi are the number of atoms of type i and their
chemical potential, respectively. Consequently, for the qDG/qn = 0
equilibrium conditions at a given temperature, the number of
vacancies, n, can be obtained from

@DG
@n
¼ mv ¼ m0v þ kBT lnXv ¼ 0: (17)

From eqn (13), (15) and (17), the equilibrium concentration of
the vacancies in a solid under the stress-free state is equal to

X0
v ¼ exp � m0v

kBT

� �
¼ exp

DSv

kB

� �
exp �DHv

kBT

� �
: (18)

The chemical potential of vacancies in a solid at constant
temperature under applied hydrostatic pressure is given by

~mv = m0
v + kBT ln Xv + PDVv. (19)

From eqn (19), the applied hydrostatic pressure alters the
equilibrium vacancy concentration by changing the vacancy
chemical potential. When normal stress components sii (i = 1,
2, 3) are unequal, the hydrostatic stress37–39 can be defined as

s ¼ 1

3

P3
i¼1

sii. Thus, if we consider the biaxial lattice stress (sc) in
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the core of the solid film, the hydrostatic pressure P in eqn (19)
can be replaced by �2sc/3. At equilibrium (~mv = 0), the concen-
tration of vacancies in the core of the solid films is

~Xv ¼ X0
v exp

2scDVv

3kBT

� �
; (20)

where X0
v ¼ exp � m0v

kBT

� �
is the equilibrium concentration of

the vacancies in the bulk of the stress-free solid. Substituting
eqn (11) into eqn (20) yields

~Xv ¼ X0
v exp �

4s0sYcDVv

3 hYc þ 2Ysð ÞkBT

� �
: (21)

Eqn (21) is the eigen thermodynamic formulation of the
equilibrium vacancy concentration in solid films. It shows
that the vacancy concentration in solid films depends on the
film thickness, the biaxial surface and bulk Young’s moduli, the
vacancy formation volume and the biaxial surface eigenstress
for a given material at constant temperature.

When a vacancy is formed in a solid, it inevitably induces local
tensile stress, contracting the lattice. The equilibrium vacancy
concentration responds to the applied strain monotonically
by decreasing (increasing) with compressive (tensile) strain.
According to eqn (21), when the surface biaxial eigenstress is
tensile (s0

s 4 0), the lattice stress in the film core is compressive,
and the equilibrium vacancy concentration in the solid film is
decreased compared with its bulk counterpart.

3. MD simulations of surface stress and
vacancy formation energy in solid films
3.1 Bulk biaxial Young’s modulus

MD simulations were conducted to extract the surface stress
and initial strain in solid films. The MD simulations were
performed using the LAMMPS code developed at the Sandia
National Laboratories.40 The MD simulations for the Au(001)
and Pt(001) crystals were performed using the embedded-atom
method (EAM) potentials.41,42 The orthogonal coordinates of
the x-, y-, and z-axes were set along the [100], [010], and [001]
lattice directions, respectively, for all simulations, consistent
with the theoretical analysis.

The simulations of bulk crystals were performed to obtain
the reference energy, U0, the equilibrium lattice constant
and the bulk biaxial Young’s modulus. To simulate the bulk
material, a representative domain of 8 � 8 � 8 unit cells was
adopted with periodical boundary conditions (PBCs) in all three
directions. The reference energy and equilibrium lattice con-
stant in the stress-free bulk crystals were obtained through
energy minimization. The periodic lengths in all three direc-
tions were simultaneously adjusted, i.e., the lattice constants
were changed along the x-, y-, and z-directions. At a given
periodic length, the system was relaxed to reach equilibrium
and to obtain the total potential energy. The reference energy
and equilibrium lattice constant were then determined at the
minimum of the total potential energy at equilibrium. The bulk

biaxial moduli were then determined from the simulations of
biaxial compressive and tensile tests, which were conducted in
two steps. (1) All atoms were displaced uniformly in the x–y plane,
according to the uniform biaxial strain with 0.1% increment.
(2) The plane stress conditions in the z-direction were identified
by adjusting the periodic length along the z-direction to achieve
the minimum total potential energy configuration. A strain range
of�1% to 1% was adopted, corresponding to the initial strains in
the film. Subsequently, energy density versus strain was fitted by
using a quadratic function. The bulk biaxial Young’s modulus
was fitted from the second derivatives of the strain energy with
respect to the applied strain (DU = U(e) � U0 = Yce

2).

3.2 The surface stress and initial strain in solid films

For solid film simulations, a film was created by placing atoms
using the stress-free bulk lattice constant. PBCs were applied
only in the x- and y-directions with free surfaces along the
z-direction to emulate a representative element of an infinitely
large film. The film thickness ranged from 2 nm to 50 nm, and
the representative element had a size of 8 � 8 unit cells in the
x- and y-directions. The relaxation of the films toward the
minimum energy state was separated into two steps, i.e., normal
and parallel relaxations.36,37 In normal relaxation, atoms were
allowed to move in the z-direction to minimize the total energy
with the prescribed representative film length L0 in both x- and
y-directions. After normal relaxation, parallel relaxation was
conducted, in which atoms were allowed to move in all three
directions. For a given number of unit cells, the total energy of
the film depends on the film length L. When the parallel
relaxation reaches the final equilibrium state, the energy is
minimized, and the representative film length has its initial
value Lini. In simulations, the representative film length was
changed, i.e., the lattice constant was changed along both
x- and y-directions. At a given representative length, the film
was relaxed to obtain the total energy at equilibrium. The initial
representative film length Lini was then determined at the
minimum of the total potential energy at equilibrium. Once
the initial representative film length was determined, the initial
strain eini of the solid film was calculated as eini = ln(Lini/L0).

3.3 The vacancy formation energy in solid films

It is assumed that a Schottky defect is created by extracting an
atom from the solid film core and placing it on the film
surface.4 To determine the ideal bonding site, the adatom is
moved on the crystal surface to find its position where the
system potential energy is minimal.

The EAM potential was used to calculate the interactive
forces between the atoms, along with the energy of the crystal.
It is capable of simulating fcc metals with better accuracy and is
ideal for calculating the vacancy formation energy. For the bulk
material, the vacancy formation energy was calculated by taking
the difference between the relaxation energy of removing an
atom from the middle of the bulk crystal and the energy of the
bulk crystal with the same number of atoms. The calculated
vacancy formation energy of bulk Au and Pt is 1.03 eV and
1.68 eV, respectively, consistent with the reference.26 After creation,
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the film was allowed to relax to the equilibrium state via energy
minimization without any external constraints, calculating the
total energy of the relaxed perfect crystal, Up

T. An atom was
extracted from the middle of the film, and then the adatom was
placed on the surface, finding the minimized energy by relaxa-
tion, called the total energy, Ua–s

T . The calculation of the vacancy
formation energy, Ev, has been previously simplified as the energy
difference between the potential energy of the relaxed perfect
crystal and the relaxed energy of adding an atom on the crystal
surface. The vacancy formation energy can be calculated as

Ev = Up
T � Ua–s

T . (22)

In the definition of the material vacancy concentration (eqn (18)),
the term containing DSv is relatively small and is disregarded here.
The vacancy concentration of the solid film is then calculated as

Xv ¼ exp � Ev

kBT

� �
: (23)

4. Results and discussion

Fig. 1 shows the strain energy per unit volume, Uc � U0, plotted
against the applied biaxial strain, ec, during loading and unloading
under the traction-free conditions along the z-direction, indicating
that the bulk Au and Pt crystals deform elastically within the
applied strain range because the unloading data partially coincide
with the loading data. Furthermore, the strain energy versus
applied strain data could be fitted by a quadratic function,
Uc � U0 = Ycec

2, as shown by the solid lines in Fig. 1, within the
investigated strain range for the Au and Pt bulk crystals. In this
case, Yc is the bulk biaxial Young’s modulus calculated from the
second derivatives of the strain energy with respect to the
applied strain, listed in Table 1. The bulk biaxial Young’s moduli
determined from the atomistic simulations will be utilized in the
following analysis.

Eqn (8) can be rewritten as follows:

�hYce
ini = 2s0

s + 2Yse
ini, (24)

where Fini
c = sini

c h = hYce
ini and Fini

c = sc
ini = s0

s + Yse
ini denote the

core force per unit length and surface force per unit length,
respectively. Plotting �Fini

c = �hYce
ini versus eini yields a slope of

2Ys and an intercept of 2s0
s, meaning that the surface biaxial

Young’s modulus and eigenstress have been determined.
Fig. 2 shows the negative core force as a function of the core

initial strain, where the solid lines are the fitting results, based
on eqn (24). The surface eigenstress, s0

s, the biaxial Young’s
moduli, Ys, and the core biaxial Young’s moduli, Yc, were
extracted, as summarized in Table 1.

By substituting the data in Table 1 using eqn (10) and (11),
one can obtain the surface stress ss and lattice stress sc in the
core of solid films versus the film thickness, h. Fig. 3 shows the
lattice stress and the surface stress of metal films versus thick-
ness h. As expected, the lattice stress decreases exponentially

Fig. 1 Strain energy per unit volume as a function of the biaxial strain for
the Au and Pt bulk crystals, where solid lines are fitting curves with the
equation Uc � U0 = Ycec

2; biaxial strain loading is applied along the [100]
and [010] directions, and the [001] direction is traction free.

Table 1 Lattice constant a0, surface eigenstress s0
s , surface biaxial

Young’s moduli Ys, bulk biaxial Young’s moduli Yc of Au(001) and Pt(001)
solid films

Materials a0, Å s0
s, N m�1 Ys, N m�1 Yc, GPa

Au(001) 4.08 1.56 14.27 66.81
Pt(001) 3.92 2.60 25.73 84.08

Fig. 3 The lattice stress and surface stress in solid film vs. film thickness h.

Fig. 2 Negative core force versus initial strain for the Au(001) films and
the Pt(001) films. The solid lines are fitted using eqn (24).
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with increasing film thickness. When the thickness is extremely
large, the lattice stress decreases to zero. Obviously, the surface
stress of the Au and Pt solid films exhibits a similar phenom-
enon, and the surface stress shows an exponential decrease
when thickness h decreases to a few nanometers. For suffi-
ciently thick films, the surface stress is almost the same as the
surface eigenstress, which is equal to the surface stress of the
bulk material. The Pt film exhibits larger variation than the Au
film of both the surface stress and the lattice stress with the
film thickness.

The vacancy formation energies obtained from MD simula-
tions for different film thicknesses in Au and Pt with the (001)
surface orientation at 0 K are plotted in Fig. 4. The MD data
indicate that the vacancy formation energy increases exponen-
tially with decreasing film thickness. The vacancy formation
energy decreases smoothly until the bulk value is reached when
the film thickness is sufficiently large.

Although the vacancy formation energy varies with tempera-
ture, there are very few changes at low temperature, which can
be ignored in this study. We used the vacancy formation energy
data obtained from MD simulations to calculate the vacancy
concentrations from eqn (23) at room temperature T = 300 K.
According to the cell parameters, the Au and Pt atomic volumes
are 1.69 � 10�29 m3 and 1.51 � 10�29 m3, respectively. The
formation volume for a vacancy in Au and Pt is equal to 0.52
and 0.7 times the atomic volume, respectively.43,44 The surface
and core elastic properties, along with the surface stress
used for calculating the plots in Fig. 5, are listed in Table 1.
The size-dependent vacancy concentration to bulk vacancy
concentration ratio obtained from the MD simulation is plotted
in Fig. 5, along with the predictions from eqn (21). The MD data
show an obvious depletion of the vacancy concentration with
decreasing film thickness, in quantitative agreement with
eqn (21). Fig. 5 shows that the vacancy concentration in the
film is greatly decreased compared with the bulk material when
the film thickness decreases. This means that it is difficult to
form vacancies in solid films.

It should be noted that the Au or Pt solid films exhibit a
tensile surface stress, observed from the MD simulation results,
which causes compressive lattice stress and also compressive

strain in the core of the films. It is known that a certain
concentration of vacancies causes volume expansion. If there
is volume shrinkage, the vacancy concentration decreases
correspondingly. Therefore, the equilibrium vacancy concen-
tration decreases due to the tensile surface stress in Au and Pt
solid films. Conversely, if there is compressive surface stress in
the solid films, one can expect that it will cause an increase in
vacancy concentration.

5. Conclusions

In summary, by considering the surface energy and surface
stress, an eigen thermodynamic model for the vacancies in
solid films, which includes the intrinsic physical parameters, such
as the surface eigenstress, surface and core Young’s moduli,
vacancy formation volume, and geometric size of the solid films,
was established. The size-dependent surface stress of the nano-
material leads to the size-dependent chemical potential of thermal
vacancies and the size-dependent vacancy concentration. The
model shows that the vacancy concentration decreases with
decreasing material size. These results have been verified by the
MD simulations of Au and Pt with the (001) surface orientation,
taking into account the surface stress effects.

Acknowledgements

This work was supported by the National Basic Research Program
of China (Grant No. 2012CB937502), Beijing government founda-
tion (No. Z151100001615047) and the National Science Foundation
(IRES 1358088).

References

1 G. Guisbiers, J. Phys. Chem. C, 2011, 115, 2616.
2 M. Müller and K. Albe, Acta Mater., 2007, 55, 3237.
3 M. Salis, C. M. Carbonaro, M. Marceddu and P. C. Ricci,

Nanosci. Nanotechnol., 2013, 3, 27.
4 Y. Kraftmakher, Phys. Rep., 1998, 299, 79.

Fig. 4 MD simulation results of the vacancy formation energy vs. film
thickness h.

Fig. 5 MD simulation results and the theoretical calculations of the
vacancy concentration in solid films to vacancy concentration in bulk
materials ratio vs. the film thickness at room temperature T = 300 K.

Paper PCCP

Pu
bl

is
he

d 
on

 2
0 

Ju
ly

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a 

on
 0

8/
10

/2
01

6 
14

:5
1:

07
. 

View Article Online

http://dx.doi.org/10.1039/c6cp03419e


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 22661--22667 | 22667

5 D. C. Look, J. W. Hemsky and J. R. Sizelove, Phys. Rev. Lett.,
1999, 82, 2552.

6 J. T. Yates Jr., Surf. Sci., 2009, 603, 1605.
7 G. Ouyang, C. X. Wang and G. W. Yang, Chem. Rev., 2009,

109, 4221.
8 H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. J. Zhou,

C. Klingshirn and H. Kalt, ACS Nano, 2008, 2, 1661.
9 S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B: Condens.

Matter Mater. Phys., 2001, 63, 075205.
10 R. Shuttleworth, Proc. Phys. Soc., London, Sect. A, 1950,

63, 444.
11 M. M. Nicolson, Proc. R. Soc. A, 1955, 228, 490.
12 E. Orowan, Proc. R. Soc. A, 1970, 316, 473.
13 J. Diao, K. Gall, M. L. Dunn and J. A. Zimmerman, Acta

Mater., 2006, 54, 643.
14 H. Liang, M. Upmanyu and H. Huang, Phys. Rev. B: Condens.

Matter Mater. Phys., 2005, 71, 241403.
15 W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo and

J. M. Zuo, Nat. Mater., 2008, 7, 308.
16 T. Y. Zhang, M. Luo and W. K. Chan, J. Appl. Phys., 2008,

103, 104308.
17 M. Mukherjee, D. Chakravorty and P. M. G. Nambissan,

Phys. Rev. B: Condens. Matter Mater. Phys., 1998, 57, 848.
18 P. M. G. Nambissan, C. Upadhyay and H. C. Verma, J. Appl.

Phys., 2003, 93, 6320.
19 S. K. Chaudhuri, M. Ghosh, D. Das and A. K. Raychaudhuri,

J. Appl. Phys., 2010, 108, 064319.
20 P. P. Gao, Z. J. Zhu, X. L. Ye, Y. C. Wu, H. J. Jin,

A. A. Volinsky, L. J. Qiao and Y. J. Su, Scr. Mater., 2016,
113, 68.

21 C. C. Yang and S. Li, Phys. Rev. B: Condens. Matter Mater.
Phys., 2007, 75, 165413.

22 M. A. Shandiz, A. Safaei, S. Sanjabi and Z. H. Barber, Solid
State Commun., 2008, 145, 432.

23 S. C. Vanithakumari and K. K. Nanda, Phys. Lett. A, 2008,
372, 6930.

24 W. H. Qi and M. P. Wang, Physica B, 2003, 334, 432.
25 W. H. Qi and M. P. Wang, J. Mater. Sci., 2004, 39, 2529.
26 W. H. Qi, M. P. Wang, M. Zhou and W. Y. Hu, J. Phys. D:

Appl. Phys., 2005, 38, 1429.
27 D. Xie, M. P. Wang and L. F. Cao, J. Mater. Sci., 2005,

40, 3565.
28 G. Ouyang, W. G. Zhu, G. W. Yang and Z. M. Zhu, J. Phys.

Chem. C, 2010, 114, 4929.
29 G. Ouyang, W. G. Zhu, C. Q. Sun, Z. M. Zhu and S. Z. Liao,

Phys. Chem. Chem. Phys., 2010, 12, 1543.
30 G. Ouyang, C. Q. Sun and W. G. Zhu, J. Phys. Chem. C, 2009,

113, 9516.
31 N. T. Gladkikh and O. P. Kryshtal, Funct. Mater., 1999, 6, 823.
32 N. T. Gladkikh, A. P. Kryshtal and S. I. Bogatyrenko, J. Tech.

Phys., 2010, 55, 1657.
33 G. Guisbiers and L. Buchaillot, Phys. Lett. A, 2009, 374, 305.
34 G. Guisbiers, Res. Lett., 2010, 5, 1132.
35 T. Chen, M. S. Chiu and C. N. Weng, J. Appl. Phys., 2006,

100, 074308.
36 T. Y. Zhang, Z. J. Wang and W. K. Chan, Phys. Rev. B:

Condens. Matter Mater. Phys., 2010, 81, 195427.
37 T. Y. Zhang and H. Ren, Acta Mater., 2013, 61, 477.
38 F. C. Larche and J. W. Cahn, Acta Metall., 1985, 33, 331.
39 J. W. Cahn and F. C. Larche, Acta Metall., 1982, 30, 51.
40 S. Plimpton, J. Comput. Phys., 1995, 117, 1.
41 M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter

Mater. Phys., 1984, 29, 6443.
42 S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B:

Condens. Matter Mater. Phys., 1986, 33, 7983.
43 H. H. Grimes, J. Phys. Chem. Solids, 1965, 26, 509.
44 R. M. Emrick and P. B. McArdle, Phys. Rev. B: Solid State,

1972, 6, 1144.

PCCP Paper

Pu
bl

is
he

d 
on

 2
0 

Ju
ly

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a 

on
 0

8/
10

/2
01

6 
14

:5
1:

07
. 

View Article Online

http://dx.doi.org/10.1039/c6cp03419e



