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Hot deformation behavior of the 20 vol.% TiC/Cu-Al2O3 composite was studied using the Gleeble-1500D
thermo-mechanical simulator with various strain rates at different deformation temperatures. The soft-
ening mechanism due to dynamic recrystallization was a feature of the high-temperature true stress–strain
curves. The peak stress increased at the lower deformation temperature and the higher strain rate.
Microstructure evolution was explored. Thermal deformation activation energy was calculated as
218.9 kJ/mol, and the constitutive equation was established. The processing map was constructed to obtain
optimal processing domain of 700-850 �C and 0.001-0.04 s21 for hot working.
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1. Introduction

Copper is widely used by the power generation industry
because of its good electrical conductivity, plasticity and
thermal conductivity (Ref 1-4). Titanium carbide is an attractive
ceramic compound, which can be used as a reinforcing material
of the metallic matrix because of its high modulus, hardness
and melting temperature (Ref 5–7). Recently, copper-based
metal matrix composites containing TiC particles have been
extensively investigated because of their potential applications
as electrical sliding contacts, resistance welding electrodes,
wear-resistant materials, high-performance switches, rockets
throat lining, motors and heat exchangers (Ref 7-9). Al2O3 is
the most commonly used dispersion strengthening phase, and
nanoscale Al2O3 prepared by internal oxidation has many

advantages. First, the Al2O3 particles prepared by internal
oxidation can reach nanometer level. Fine Al2O3 particles are
distributed in the Cu matrix and can maintain good coherency
with the matrix. Second, Al2O3 can strengthen copper and
maintain high conductivity of copper at the same time. Third,
the process of Al2O3 production by internal oxidation is easy to
implement, low in price and convenient for large-scale
applications (Ref 10, 11). Copper-based materials have been
attracting more attention, especially regarding the research of
copper alloys processing technology (Ref 12-15).

During the past few years, properties and microstructure of
Cu-TiC composites have been studied (Ref 16-19). However,
hot deformation behavior and processing maps of the TiC/Cu-
Al2O3 composite have not been systematically reported yet. In
this paper, hot deformation behavior of the 20 vol.% TiC/Cu-
Al2O3 composite was studied at various strain rates and
different deformation temperatures. The flow stress and
microstructure evolution were investigated, and the constitutive
equation along with the processing maps was established based
on the experimental data.

2. Experiment

Commercial powders of 20 vol.% TiC (48 lm, 99.9% pure),
75 vol.% Cu-0.28%Al (67 lm, 99.9% pure) and 5 vol.% Cu2O
(75 lm, 99.9% pure) were mixed using the QQM/B roller
mixer for 12 h. The milled powders were loaded in graphite die
and press-sintered in the VDBF-250 vacuum hot pressing
sintering furnace at 950 �C under 30 MPa pressure in vacuum
(1.8 9 10�2 Pa) for 2 h.

Compression tests were carried out using the Gleeble-
1500D thermo-mechanical simulator at 450-850 �C with the
strain rate of 0.001-1 s�1 and the total strain of 50%. The
samples were heated to deformation temperature at 10 �C/s
heating rate and then held for 180 s before compression tests.
The samples were water-quenched after compression to pre-
serve deformation microstructure, which was characterized by
the JSM-5610 LV scanning electron microscope (SEM) and the
JEM-2100 high-resolution transmission electron microscope
(HRTEM).

Yong Liu, School of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China;
Collaborative Innovation Center of Nonferrous Metals, Luoyang
471023 Henan Province, China; and Henan Key Laboratory of
Advanced Non-Ferrous Materials, Luoyang 471023, China;
Zhiqiang Yang, School of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China;
Baohong Tian, School of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471023, China; and
Henan Key Laboratory of Advanced Non-Ferrous Materials, Luoyang
471023, China; Yi Zhang, School of Material Science and
Engineering, Henan University of Science and Technology, Luoyang
471023, China; and Collaborative Innovation Center of Nonferrous
Metals, Luoyang 471023 Henan Province, China; Zhengbin Gu,
National Laboratory of Solid State Microstructures and Department of
Materials Science and Engineering, College of Engineering and
Applied Sciences, Nanjing University, Nanjing 210093, China; and
Alex A. Volinsky, Department of Mechanical Engineering, University
of South Florida, Tampa 33620. Contact e-mails:
liuyong@haust.edu.cn and volinsky@usf.edu.

JMEPEG (2018) 27:4791–4798 �ASM International
https://doi.org/10.1007/s11665-018-3586-1 1059-9495/$19.00

Journal of Materials Engineering and Performance Volume 27(9) September 2018—4791

http://orcid.org/0000-0002-8520-6248
http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-018-3586-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-018-3586-1&amp;domain=pdf


3. Results and Discussion

3.1 Initial Microstructure

Figure 1 shows the initial microstructure of the 20 vol.%
TiC/Cu-Al2O3 composite.

Figure 1(a) shows SEM image of the composite microstruc-
ture. Two types of morphological particles can be seen,
continuous dense gray dispersed phase of copper matrix and
black TiC phase. Figure 1(b) shows HRTEM images of the
composite. There are many Al2O3 particles ranging from 5 to
20 nm in size. During plastic deformation, nano-sized Al2O3

particles can act as dislocation sources, increasing dislocation
density. Figure 1(c) is a magnified image of Fig. 1(b). Fig-
ure 1(c) illustrates diffuse distribution of Al2O3 particles with
petal-like morphology and good coherency (Ref 20). Fig-
ure 1(d) shows electron diffraction pattern and c-Al2O3 index-
ing.

3.2 True Stress–Strain Curves

True stress–strain curves of the 20 vol.% TiC/Cu-Al2O3

composite obtained at various strain rates and different
deformation temperatures are presented in Fig. 2.

Figure 2 shows the effects of deformation temperature and
strain rate on the flow stress behavior of the composite. All

curves exhibit the same trend of the flow stress increasing
quickly to the peak value and then slowly decreasing. This
behavior indicates that there is competition between the work
hardening and dynamic softening. Work hardening is caused by
dislocations multiplication, pileup and tangle. Dynamic soft-
ening is caused by dislocations rearrangement and interactions.
It can also be seen that the peak stress decreases with
deformation temperature. Dynamic recrystallization nucleation
rate and growth rate increase with temperature, reinforcing the
softening effect, since there are weaker atomic interactions at
the higher temperature. It can also be seen that the peak stress
increases with the strain rate due to precipitate growth and
dislocation slip in a short period of time. Based on these
observations, the deformation temperature and strain rate have
obvious effects on the flow stress behavior. Thus, the composite
is sensitive to the strain rate and deformation temperature.

3.3 Microstructure Analysis

Microstructure of the 20 vol.% TiC/Cu-Al2O3 composite at
different deformation temperatures with 0.001 s�1 strain rate is
shown in Fig. 3.

It can be seen that the grains exhibit strong alignment in the
deformation direction, resulting in the deformation texture at
a relatively low temperature of 450 �C in Fig. 3(a) and 650 �C
in Fig. 3(b). However, recrystallized grains can be clearly
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Fig. 1 Initial microstructure of the 20 vol.% TiC/Cu-Al2O3 composite: (a) SEM image; (b, c) HRTEM images; (d) selected area electron
diffraction pattern and indexing
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observed at the higher deformation temperature of 850 �C in
Fig. 3(c), which implies that dynamic recrystallization occurs.
Since the strain rate of 0.001 s�1 is very low and deformation

temperature is high, there is enough time for the full
recrystallization process and microstructure evolution. Many
of the equiaxed grains can be seen in Fig. 3(c).
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Fig. 2 True stress–strain curves with various strain rates at different temperatures for the 20 vol.% TiC/Cu-Al2O3 composite: (a) _e = 0.001 s�1;
(b) _e = 0.01 s�1; (c) _e = 0.1 s�1; (d) _e = 1 s�1

Fig. 3 Microstructure of the 20 vol.% TiC/Cu-Al2O3 composite deformed at 0.001 s�1 strain rate and different temperatures: (a) 450 �C; (b)
650 �C; (c) 850 �C
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Microstructure of the composite at 0.001 s�1 strain rate and
750 �C deformation temperature is shown in Fig. 4. The grains
of the composite deformed at 0.001 s�1 in Fig. 4(a) indicate the
occurrence of dynamic recrystallization. Since the duration of
dynamic recrystallization process is very short and the struc-
tural evolution is interrupted as a result of water quenching after
hot deformation, dynamic recrystallization is not completely
finished and parts of the deformed structure can also be
observed. It can be seen that twins and dislocations are present
in the deformed composite in Fig. 4(b) and (c). Twins and
dislocations increase the strength of materials. Figure 4(d)
shows that there is an amorphous layer about 20-30 nm thick
between copper and titanium carbide, which helps copper and
titanium carbide to bond better and improve the strength.

3.4 Constitutive Equation

In the hot working process, the relationships between the
strain rate, deformation temperature and flow stress are
expressed by the following equations (Ref 21, 22):

_e ¼ A1r
n exp � Q

RT

� �
ðar< 0:8Þ ðEq 1Þ

_e ¼ A2 expðbrÞ exp � Q

RT

� �
ðar> 1:2Þ ðEq 2Þ

_e ¼ A½sinhðarÞ�n exp � Q

RT

� �
(for all stress) ðEq 3Þ

Here, A1, A2, A, a and b are material�s constants, R is the
universal gas constant, n is the stress exponent, Q is the
activation energy for hot deformation, T is the absolute hot
working temperature, and _e is the strain rate. Equation 1 is
suitable for low stress, and the exponent-type Eq 2 is suit-
able for high stress. The hyperbolic sine Eq 3 is suitable for
stresses over a wide range.

The relationship between the strain rate, deformation
temperature and flow stress was obtained using the Zener–
Hollomon parameter, which can be calculated from the
equation proposed by Sellars and McTegart (Ref 23, 24):

Z ¼ A½sinhðarÞ�n ðEq 4Þ

Taking natural logarithms of both sides of Eq 1, 2 and 4
yields:

ln _e ¼ lnA1 �
Q

RT
þ n lnr ðEq 5Þ
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Fig. 4 Microstructure of the 20 vol.% TiC/Cu-Al2O3 composite deformed at 750 �C and 0.001 s�1 strain rate: (a) SEM image; (b, c, d)
HRTEM images
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ln _e ¼ lnA2 �
Q

RT
þ br ðEq 6Þ

ln Z ¼ lnAþ n ln½sinhðarÞ� ðEq 7Þ

a can be obtained from lnr versus ln _e plots and r versus ln
_e plots, shown in Fig. 5, and the value of a is 0.0094.

In order to calculate n and lnA, ln[sinh(ar)] versus ln _e plots
and ln[sinh(ar)] versus lnZ plots are shown in Fig. 6. The
values of n and lnA are 8.0195 and 21.6932, respectively.

Q ¼ R
@ ln sinhðarÞ½ �

@ð1=TÞ

����
_e

@ ln _e
@ ln sinhðarÞ½ �

����
T

¼ RnS ðEq 8Þ

S can be obtained from the 1000/T versus ln[sinh(ar)] plots
shown in Fig. 6(b). Thus, S is 3.2543 and Q is
218.9256 kJ/mol. Based on the above analysis, the constitutive

equation for the 20 vol.% TiC/Cu-Al2O3 composite at high
temperature is:

_e ¼ e21:6932½sinhð0:0094rÞ�8:0195 exp � 218925:6

8:314T

� �
ðEq 9Þ

Yang et al. (Ref 25) studied the thermal deformation
behavior of 10% TiC/Cu-Al2O3 composite materials and found
that the thermal activation energy was 170.73 kJ/mol. The
addition of TiC increases the deformation resistance of the
material, resulting in an increase in thermal activation energy.
Rodrigo et al. (Ref 26) studied the creep behavior of Cu-TiC
composites and determined the activation energy of the material
at 109-156 kJ/mol. The activation energy is lower than the
20 vol.% TiC/Cu-Al2O3 composite material tested in this
experiment. This shows that after strengthening the material
with Al2O3 and TiC, it needs more energy to be deformed.
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Fig. 5 Relationships between the flow stress and the strain rate: (a) lnr–ln _e and (b) r–ln _e
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3.5 Processing Maps

The processing map is an effective tool to design and
optimize material�s hot working processes. The processing map
is constructed by using the principles of the dynamic materials
model (DMM) (Ref 27, 28). In this model, material�s defor-
mation behavior can be analyzed under different conditions.
The hot working process parameters need to be optimized to
make sure that hot working is in the ‘‘safe’’ and not in the
‘‘unsafe’’ zone.

Based on the DMM, the processing map of the composite is
shown in Fig. 7. The numbers against the contour lines
represent percent efficiency of power dissipation, while shaded
domains represent unstable regions.

It can be seen that the processing map is clearly divided into
stable and unstable domains. The contours represent efficiency

of power dissipation in percent, which indicates the microstruc-
ture changes during hot deformation. The shaded domains
represent the boundaries for instability and cracking, which
result from localized deformation. The processing maps at
different strains are essentially similar, which indicates that
strain does not have a significant role. It can be seen that three
instability domains occurred at strains of 0.3 and 0.5. The first
region is at the temperature higher than 750 �C and the strain
rate higher than 0.1 s�1, the second region is at the temperature
lower than 500 �C and the strain rate higher than 0.04 s�1, and
the last region is at the temperature ranging from 500 to 670 �C
and the strain rate ranging from 0.001 to 0.02 s�1. Simultane-
ously, the map exhibits domain at the temperature higher than
700 �C and the strain rate ranging from 0.006 to 0.2 s�1 with
the higher efficiency of about 20%.
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Fig. 7 Processing maps of the 20 vol.% TiC/Cu-Al2O3 composite at various true stains: (a) e = 0.3 and (b) e = 0.5

Fig. 8 The microstructure of different regions of the processing map for the 20 vol.% TiC/Cu-Al2O3 composite: (a) T = 450 �C, _e = 1 s�1; (b)
T = 850 �C, _e = 1 s�1; and (c) T = 750 �C, _e = 0.01 s�1
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At the lower temperature of 450-550 �C and the lower strain
rate, the conversion of the energy of deformation into activation
energy of dynamic recrystallization is lower because of the
lower temperature (Fig. 3a), and part of the dynamic recrys-
tallization occurs in this region. At the lower temperature of
450-550 �C and the higher strain rate, the TiC/Cu-Al2O3

composite material will be unstable, as shown in Fig. 8(a).
When the temperature is about 750 �C, coupled with the higher
strain rate, a long period of time is needed for dynamic
recrystallization nucleation and growth. However, for the
relatively short deformation time, the effect of work hardening
is higher than softening by dynamic recrystallization, thereby
forming the unstable region (Fig. 8b). The region with the
higher temperature and the lower strain rate is stable region
in Fig. 8c. Since the softening rate by dynamic recrystallization
is higher than the work hardening rate, the activation energy of
thermal deformation converts into dynamic recrystallization. As
a result, the optimal processing parameters for hot working
occurred at 700-850 �C and 0.001-0.04 s�1 strain rate, with 10-
27% efficiency of power dissipation.

4. Conclusions

Hot deformation behavior of the 20 vol.% TiC/Cu-Al2O3

composite was studied by isothermal compression tests at
temperatures ranging from 450 to 850 �C and strain rates
ranging from 0.001 to 1 s�1. The main conclusions are
summarized as follows.

1. True stress–strain curves of the composite show typical
characteristics of dynamic recrystallization. The flow
stress decreases with increasing the deformation tempera-
ture and decreasing the strain rate. This means that the
20 vol.% TiC/Cu-Al2O3 composite belongs to tempera-
ture- and strain rate-sensitive materials.

2. The relationship between the strain rate, deformation tem-
perature and flow stress is expressed by the constitutive
equation: _e ¼ e21:6932 sinh 0:0094rð Þ½ �8:0195exp � 218925:6

8:314T

� �
,

while the activation energy is calculated as 218.9 kJ/mol.
3. The processing maps of the composite have been estab-

lished. The optimal domain for hot working is at 700-
850 �C and 0.001-0.04 s�1 strain rate, with 10-27%
power dissipation efficiency.
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