Homework: Condition Number of a Square Matrix

Follow the same format as given at http://www.eng.usf.edu/~kaw/class/EML3035/homework/sample_homework.htm

Look under Sample HW for assignments HW#5 and beyond

What to Submit:
The sequence of items attached needs to be as follows
1. Affidavit sheet
 http://numericalmethods.eng.usf.edu/EML3035/Independent_affidavit_sheet.pdf
2. Pseudo-code for the function (Skip this part for this HW)
3. Flow chart (needs to be done with a word processor)
4. mfile for the function
5. Published mfiles (one for each of the three inputs)

Title
Finding the condition number of the matrix.

Background
The condition number, κ, of matrix A is defined as follows:

$$\kappa = \| A \| \| A^{-1} \|$$

where

$\| A \|$ = The norm of matrix A

$\| A^{-1} \|$ = The norm of the inverse of matrix A

One of the ways to define the norm of a rectangular matrix $[B]_{m \times n}$ is called the column sum norm

$$\| B \| = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |b_{ij}|$$

The condition number of the coefficient matrix in a set of simultaneous linear equations is a measure of the accuracy of the solution.

Example
\[A = \begin{bmatrix} 1 & 3 & 4 \\ 4 & 5 & 6 \\ -15 & 6 & 9 \end{bmatrix} \]

\[A^{-1} = \begin{bmatrix} 0.3333 & -0.1111 & -0.0741 \\ -4.6667 & 2.5556 & 0.3704 \\ 3.6667 & -1.8889 & -0.2593 \end{bmatrix} \]

\[\| A \| = 20 \]

\[\| A^{-1} \| = 8.6667 \]

\[\kappa = \| A \| \| A^{-1} \| = 20 \times 8.6667 = 173.3340 \]

Specifications

1. You are going to write your own MATLAB function called `condmatrix` with the form

 \[\text{function } [\text{condval}] = \text{condmatrix}(A) \]

to find the condition number of the matrix. Your program should work with square matrix of any size. The input parameter is \(A = \text{square matrix of order } n \times n \). You need to use loop(s) and conditional statement(s) (**you are not allowed to use the MATLAB `max` and `sum` or equivalent commands**) in the procedure to find the norm of the matrices.

You can use MATLAB `inv` function to find the inverse of a square matrix.

Return one variable – `condval`, that is, the value of the condition number of the matrix.

2. Now write another mfile called `test_condmatrix.m` that uses the MATLAB function `condmatrix` to find the condition number of the matrix.

3. Test the program with the following matrix and two other matrices of your choice of various sizes (greater than \(4 \times 4 \)).

\[\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 3 & 3 & 12 & 0 & 0 \\ 0 & 4 & -33 & 21 & 0 \\ 0 & 0 & 12 & 0 & 23 \\ 5 & 0 & 0 & 14 & 67 \end{bmatrix} \]